Abstract

Frequency fluctuations of an optical frequency standard at 1.39 µm have been measured by means of a highly-sensitive optical frequency discriminator based on the fringe-side transmission of a high finesse optical resonator. Built on a Zerodur spacer, the optical resonator exhibits a finesse of 5500 and a cavity-mode width of about 120 kHz. The optical frequency standard consists of an extended-cavity diode laser that is tightly stabilized against the center of a sub-Doppler H218O line, this latter being detected by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. The emission linewidth has been carefully determined from the frequency-noise power spectral density by using a rather simple approximation, known as β-line approach, as well as the exact method based on the autocorrelation function of the laser light field. It turns out that the linewidth of the optical frequency standard amounts to about 7 kHz (full width at half maximum) for an observation time of 1 ms. Compared to the free-running laser, the measured width corresponds to a line narrowing by a factor of ~220.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range

Florian M. Schmidt, Aleksandra Foltynowicz, Weiguang Ma, and Ove Axner
J. Opt. Soc. Am. B 24(6) 1392-1405 (2007)

Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy

Hemanth Dinesan, Eugenio Fasci, Antonio Castrillo, and Livio Gianfrani
Opt. Lett. 39(7) 2198-2201 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Ye, L.-S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 microm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21(13), 1000–1002 (1996).
    [Crossref] [PubMed]
  2. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16(12), 2247–2254 (1999).
    [Crossref]
  3. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15(1), 6–15 (1998).
    [Crossref]
  4. H. Dinesan, E. Fasci, A. Castrillo, and L. Gianfrani, “Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” Opt. Lett. 39(7), 2198–2201 (2014).
    [Crossref] [PubMed]
  5. O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25(7), 1166–1177 (2008).
    [Crossref]
  6. A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for quantitative trace gas detection,” Opt. Express 16(19), 14689–14702 (2008).
    [Crossref] [PubMed]
  7. L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).
  8. A. Castrillo, L. Moretti, E. Fasci, M. D. De Vizia, G. Casa, and L. Gianfrani, “The Boltzmann constant from the shape of a molecular spectral line,” J. Mol. Spectrosc. 300, 131–138 (2014).
    [Crossref]
  9. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46(2), 178–182 (1997).
    [Crossref]
  10. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
    [Crossref] [PubMed]
  11. N. Bucalovic, V. Dolgovskiy, C. Schori, P. Thomann, G. Di Domenico, and S. Schilt, “Experimental validation of a simple approximation to determine the linewidth of a laser from its frequency noise spectrum,” Appl. Opt. 51(20), 4582–4588 (2012).
    [Crossref] [PubMed]
  12. D. S. Elliott, R. Roy, and S. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
    [Crossref]
  13. R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30(5), 2827–2829 (1984).
    [Crossref]
  14. E. Bava, G. Galzerano, and C. Svelto, “Frequency-noise sensitivity and amplitude-noise immunity of discriminators based on fringe-side Fabry-Perot cavities,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(8), 1150–1159 (2002).
    [Crossref]
  15. C. Chatfield, The Analysis of Time Series— An Introduction, 6th edition (Chapman and Hall, 2003).
  16. R. W. Fox, “Trace Detection with Diode Lasers,” Ph.D. dissertation (University of Colorado, Boulder, 1995).
  17. A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, “Accurate absolute reference frequencies from 1511 to 1545 nm of the ν1+ν3 band of 12C2H2 determined with laser frequency comb interval measurements,” J. Opt. Soc. Am. B 23(10), 2200–2208 (2006).
    [Crossref]
  18. G. Galzerano, E. Fasci, A. Castrillo, N. Coluccelli, L. Gianfrani, and P. Laporta, “Absolute frequency stabilization of an extended-cavity diode laser against Doppler-free H217O absorption lines at 1.384 μm,” Opt. Lett. 34(20), 3107–3109 (2009).
    [Crossref] [PubMed]

2014 (2)

H. Dinesan, E. Fasci, A. Castrillo, and L. Gianfrani, “Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” Opt. Lett. 39(7), 2198–2201 (2014).
[Crossref] [PubMed]

A. Castrillo, L. Moretti, E. Fasci, M. D. De Vizia, G. Casa, and L. Gianfrani, “The Boltzmann constant from the shape of a molecular spectral line,” J. Mol. Spectrosc. 300, 131–138 (2014).
[Crossref]

2013 (1)

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).

2012 (1)

2010 (1)

2009 (1)

2008 (2)

2006 (1)

2002 (1)

E. Bava, G. Galzerano, and C. Svelto, “Frequency-noise sensitivity and amplitude-noise immunity of discriminators based on fringe-side Fabry-Perot cavities,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(8), 1150–1159 (2002).
[Crossref]

1999 (1)

1998 (1)

1997 (1)

J. Ye, L.-S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46(2), 178–182 (1997).
[Crossref]

1996 (1)

1984 (1)

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30(5), 2827–2829 (1984).
[Crossref]

1982 (1)

D. S. Elliott, R. Roy, and S. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[Crossref]

Alcock, A. J.

Axner, O.

Bava, E.

E. Bava, G. Galzerano, and C. Svelto, “Frequency-noise sensitivity and amplitude-noise immunity of discriminators based on fringe-side Fabry-Perot cavities,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(8), 1150–1159 (2002).
[Crossref]

Bernard, J. E.

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30(5), 2827–2829 (1984).
[Crossref]

Bucalovic, N.

Casa, G.

A. Castrillo, L. Moretti, E. Fasci, M. D. De Vizia, G. Casa, and L. Gianfrani, “The Boltzmann constant from the shape of a molecular spectral line,” J. Mol. Spectrosc. 300, 131–138 (2014).
[Crossref]

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).

Castrillo, A.

A. Castrillo, L. Moretti, E. Fasci, M. D. De Vizia, G. Casa, and L. Gianfrani, “The Boltzmann constant from the shape of a molecular spectral line,” J. Mol. Spectrosc. 300, 131–138 (2014).
[Crossref]

H. Dinesan, E. Fasci, A. Castrillo, and L. Gianfrani, “Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” Opt. Lett. 39(7), 2198–2201 (2014).
[Crossref] [PubMed]

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).

G. Galzerano, E. Fasci, A. Castrillo, N. Coluccelli, L. Gianfrani, and P. Laporta, “Absolute frequency stabilization of an extended-cavity diode laser against Doppler-free H217O absorption lines at 1.384 μm,” Opt. Lett. 34(20), 3107–3109 (2009).
[Crossref] [PubMed]

Chepurov, S.

Coluccelli, N.

Czajkowski, A.

De Vizia, M. D.

A. Castrillo, L. Moretti, E. Fasci, M. D. De Vizia, G. Casa, and L. Gianfrani, “The Boltzmann constant from the shape of a molecular spectral line,” J. Mol. Spectrosc. 300, 131–138 (2014).
[Crossref]

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30(5), 2827–2829 (1984).
[Crossref]

Di Domenico, G.

Dinesan, H.

Dolgovskiy, V.

Elliott, D. S.

D. S. Elliott, R. Roy, and S. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[Crossref]

Fasci, E.

A. Castrillo, L. Moretti, E. Fasci, M. D. De Vizia, G. Casa, and L. Gianfrani, “The Boltzmann constant from the shape of a molecular spectral line,” J. Mol. Spectrosc. 300, 131–138 (2014).
[Crossref]

H. Dinesan, E. Fasci, A. Castrillo, and L. Gianfrani, “Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” Opt. Lett. 39(7), 2198–2201 (2014).
[Crossref] [PubMed]

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).

G. Galzerano, E. Fasci, A. Castrillo, N. Coluccelli, L. Gianfrani, and P. Laporta, “Absolute frequency stabilization of an extended-cavity diode laser against Doppler-free H217O absorption lines at 1.384 μm,” Opt. Lett. 34(20), 3107–3109 (2009).
[Crossref] [PubMed]

Foltynowicz, A.

Fox, R. W.

Galzerano, G.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).

G. Galzerano, E. Fasci, A. Castrillo, N. Coluccelli, L. Gianfrani, and P. Laporta, “Absolute frequency stabilization of an extended-cavity diode laser against Doppler-free H217O absorption lines at 1.384 μm,” Opt. Lett. 34(20), 3107–3109 (2009).
[Crossref] [PubMed]

E. Bava, G. Galzerano, and C. Svelto, “Frequency-noise sensitivity and amplitude-noise immunity of discriminators based on fringe-side Fabry-Perot cavities,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(8), 1150–1159 (2002).
[Crossref]

Gianfrani, L.

Hall, J. L.

Hollberg, L.

Laporta, P.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).

G. Galzerano, E. Fasci, A. Castrillo, N. Coluccelli, L. Gianfrani, and P. Laporta, “Absolute frequency stabilization of an extended-cavity diode laser against Doppler-free H217O absorption lines at 1.384 μm,” Opt. Lett. 34(20), 3107–3109 (2009).
[Crossref] [PubMed]

Ma, L.-S.

Ma, W.

Madej, A. A.

Merlone, A.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).

Moretti, L.

A. Castrillo, L. Moretti, E. Fasci, M. D. De Vizia, G. Casa, and L. Gianfrani, “The Boltzmann constant from the shape of a molecular spectral line,” J. Mol. Spectrosc. 300, 131–138 (2014).
[Crossref]

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).

Roy, R.

D. S. Elliott, R. Roy, and S. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[Crossref]

Schilt, S.

Schori, C.

Smith, S.

D. S. Elliott, R. Roy, and S. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[Crossref]

Svelto, C.

E. Bava, G. Galzerano, and C. Svelto, “Frequency-noise sensitivity and amplitude-noise immunity of discriminators based on fringe-side Fabry-Perot cavities,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(8), 1150–1159 (2002).
[Crossref]

Thomann, P.

Ye, J.

Appl. Opt. (2)

IEEE Trans. Instrum. Meas. (1)

J. Ye, L.-S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46(2), 178–182 (1997).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

E. Bava, G. Galzerano, and C. Svelto, “Frequency-noise sensitivity and amplitude-noise immunity of discriminators based on fringe-side Fabry-Perot cavities,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(8), 1150–1159 (2002).
[Crossref]

J. Mol. Spectrosc. (1)

A. Castrillo, L. Moretti, E. Fasci, M. D. De Vizia, G. Casa, and L. Gianfrani, “The Boltzmann constant from the shape of a molecular spectral line,” J. Mol. Spectrosc. 300, 131–138 (2014).
[Crossref]

J. Opt. Soc. Am. B (4)

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (2)

D. S. Elliott, R. Roy, and S. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[Crossref]

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30(5), 2827–2829 (1984).
[Crossref]

Phys. Rev. Lett. (1)

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O lineshapes at 1.39 µm,” Phys. Rev. Lett. 111, 060803 (2013).

Other (2)

C. Chatfield, The Analysis of Time Series— An Introduction, 6th edition (Chapman and Hall, 2003).

R. W. Fox, “Trace Detection with Diode Lasers,” Ph.D. dissertation (University of Colorado, Boulder, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of the experimental apparatus. OI stands for optical isolator; EOM, electro-optic modulator; PZT, piezoelectric transducer; fPDH is the modulation frequency ( = 30 MHz) that is used for the Pound-Drever-Hall locking; fPM stands for phase-modulation frequency at the cavity free-spectral-range splitting frequency; DBM, double balanced mixer; LP, low-pass filter; BP, band-pass filter at 711 MHz; ΔΦ, phase shifter; λ/4, quarter wave plate; PBS, polarizing beam splitter; PD, photodiode; RF AMP, radio-frequency amplifier; AMP, transimpedance amplifier; PS-2WAY, 2-way radio-frequency power-splitter; DAQ, data acquisition card; AOM, acousto-optic modulator.

Fig. 2
Fig. 2

Typical temporal evolution of a ring-down event as recorded by the detector PD3, along with the fit (red curve) to a single exponential decay. From 42 repeated measurements of the decay time, a mean value of 1.30 µs is obtained with a statistical uncertainty of 0.02 µs, leading to a cavity-mode width (FWHM) of 122 (2) kHz.

Fig. 3
Fig. 3

Cavity transmission measurements with the ECDL in free-running conditions (upper panel) and stabilized against the Sub-Doppler NICE-OHMS signal (lower panel). In this latter case, a Lorentzian profile is observed with a full-width at half-maximum (FWHM) of ~122 kHz, as determined from a nonlinear least-squares fit (red line) of the transmitted spectrum.

Fig. 4
Fig. 4

Frequency-noise power spectral density, as measured from the cavity-transmitted signal with the cavity side-locked to the laser. The β-line is also shown, along with the indication of a cut-off frequency of 1 kHz corresponding to an observation time of 1 ms. For Fourier frequencies larger than 100 kHz, the frequency noise is clearly smaller than 1 Hz2/Hz. The spectrum has been modified (see the blue trace) to take into account the 122 kHz cavity cutoff.

Fig. 5
Fig. 5

Power spectrum of the laser intensity noise and of the detector noise, compared to the intensity noise that is measured on the cavity transmitted beam. For each trace, the resolution bandwidth was 20 Hz.

Fig. 6
Fig. 6

The laser emission profile (in terms of relative intensity) reconstructed from the frequency-noise power spectral density of Fig. 4, by using numerical integrations of Eqs. (2) and (3). The profile is reproduced by a Voigt convolution with a satisfactory agreement, as demonstrated by a nonlinear least-squares fit, whose residuals are shown in the bottom plot.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δν= 8Aln2
S E (ν)=2 + e i2πντ Γ E (τ)dτ
Γ E (τ)= E*(t)E(t+τ) = E 0 2 e 2π ν 0 τ exp[ 2 0 S δν (f) sin 2 (πfτ) f 2 df ].

Metrics