Abstract

An anisotropic model for the fabrication of annealed and reverse proton exchange waveguides in lithium niobate is presented. We characterized the anisotropic diffusion properties of proton exchange, annealing and reverse proton exchange in Z-cut and X-cut substrates using planar waveguides. Using this model we fabricated high quality channel waveguides with propagation losses as low as 0.086 dB/cm and a coupling efficiency with optical fiber of 90% at 1550 nm. The splitting ratio of a set of directional couplers is predicted with an accuracy of ± 0.06.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reverse proton exchange for buried waveguides in LiNbO3

Yu. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato
J. Opt. Soc. Am. A 15(7) 1838-1842 (1998)

Dilute-melt, proton-exchange slab waveguides in LiNbO3: a new fabrication and characterization method

Torben Veng and Torben Skettrup
Appl. Opt. 36(24) 5941-5948 (1997)

Nonlinear diffusion model for annealed proton-exchanged waveguides in zirconium-doped lithium niobate

Carsten Langrock, Rostislav V. Roussev, Giovanni Nava, Paolo Minzioni, Nicola Argiolas, Cinzia Sada, and Martin M. Fejer
Appl. Opt. 55(24) 6559-6563 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
    [Crossref]
  2. B. Thomsen, D. Reid, R. Watts, L. Barry, and J. Harvey, “Characterization of 40-gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE T. Instrum. Meas. 53, 186–191 (2004).
    [Crossref]
  3. S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
    [Crossref] [PubMed]
  4. S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Semiclassical motion of a multiband bloch particle in a time-dependent field: Optical visualization,” Phys. Rev. B 74, 155116 (2006).
    [Crossref]
  5. S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
    [Crossref]
  6. D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
    [Crossref] [PubMed]
  7. P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
    [Crossref] [PubMed]
  8. R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
    [Crossref]
  9. Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838–1842 (1998).
    [Crossref]
  10. P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, “Simulation of refractive index profiles for titanium indiffused lithium niobate channel waveguides,” Fiber Integrated Opt. 15, 135–147 (1996).
    [Crossref]
  11. Y. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 1010–1017 (1997).
    [Crossref]
  12. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
    [Crossref]
  13. M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
    [Crossref] [PubMed]
  14. R. Roussev, X. Xie, K. Parameswaran, and M. Fejer, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in “Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the IEEE,”, vol. 1 (2003), vol. 1, pp. 338–339.
  15. R. V. Roussev, “Optical frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. thesis, Stanford University (2006).
  16. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [Crossref]
  17. G. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron. 16, 373–375 (1984).
    [Crossref]
  18. J. M. Zavada, H. C. Casey, C.-H. Chen, and A. Loni, “Correlation of refractive index profiles with substitutional hydrogen concentrations in annealed proton-exchanged linbo3 waveguides,” Appl. Phys. Lett. 62, 2769–2771 (1993).
    [Crossref]
  19. Y. N. Korkishko and V. A. Fedorov, Ion Exchange in Single Crystals for Integrated Optics and OptoelectronicsInternational Science Publishing, (Cambridge1999).
  20. S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
    [Crossref]
  21. J. Weickert, B. Romeny, and M. Viergever, “Efficient and reliable schemes for nonlinear diffusion filtering,” IEEE T. Imag. Process. 7, 398–410 (1998).
    [Crossref]
  22. J. Jackel and J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
    [Crossref]

2014 (1)

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

2012 (1)

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

2006 (2)

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref] [PubMed]

S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Semiclassical motion of a multiband bloch particle in a time-dependent field: Optical visualization,” Phys. Rev. B 74, 155116 (2006).
[Crossref]

2004 (1)

B. Thomsen, D. Reid, R. Watts, L. Barry, and J. Harvey, “Characterization of 40-gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE T. Instrum. Meas. 53, 186–191 (2004).
[Crossref]

2002 (1)

2001 (1)

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

2000 (1)

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

1998 (2)

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838–1842 (1998).
[Crossref]

J. Weickert, B. Romeny, and M. Viergever, “Efficient and reliable schemes for nonlinear diffusion filtering,” IEEE T. Imag. Process. 7, 398–410 (1998).
[Crossref]

1997 (1)

Y. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 1010–1017 (1997).
[Crossref]

1996 (1)

P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, “Simulation of refractive index profiles for titanium indiffused lithium niobate channel waveguides,” Fiber Integrated Opt. 15, 135–147 (1996).
[Crossref]

1993 (1)

J. M. Zavada, H. C. Casey, C.-H. Chen, and A. Loni, “Correlation of refractive index profiles with substitutional hydrogen concentrations in annealed proton-exchanged linbo3 waveguides,” Appl. Phys. Lett. 62, 2769–2771 (1993).
[Crossref]

1991 (2)

J. Jackel and J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[Crossref] [PubMed]

1989 (1)

S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[Crossref]

1984 (1)

G. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron. 16, 373–375 (1984).
[Crossref]

1974 (1)

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[Crossref]

1970 (1)

Asher, S. E.

S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[Crossref]

Attanasio, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Aungskunsiri, K.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Baldi, P.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Barry, L.

B. Thomsen, D. Reid, R. Watts, L. Barry, and J. Harvey, “Characterization of 40-gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE T. Instrum. Meas. 53, 186–191 (2004).
[Crossref]

Biswas, J. C.

P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, “Simulation of refractive index profiles for titanium indiffused lithium niobate channel waveguides,” Fiber Integrated Opt. 15, 135–147 (1996).
[Crossref]

Bonneau, D.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

Bortz, M. L.

Bossi, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Caccavale, F.

Casey, H. C.

J. M. Zavada, H. C. Casey, C.-H. Chen, and A. Loni, “Correlation of refractive index profiles with substitutional hydrogen concentrations in annealed proton-exchanged linbo3 waveguides,” Appl. Phys. Lett. 62, 2769–2771 (1993).
[Crossref]

Chen, C.-H.

J. M. Zavada, H. C. Casey, C.-H. Chen, and A. Loni, “Correlation of refractive index profiles with substitutional hydrogen concentrations in annealed proton-exchanged linbo3 waveguides,” Appl. Phys. Lett. 62, 2769–2771 (1993).
[Crossref]

Cianci, E.

S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Semiclassical motion of a multiband bloch particle in a time-dependent field: Optical visualization,” Phys. Rev. B 74, 155116 (2006).
[Crossref]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref] [PubMed]

Datt, S.

P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, “Simulation of refractive index profiles for titanium indiffused lithium niobate channel waveguides,” Fiber Integrated Opt. 15, 135–147 (1996).
[Crossref]

De Micheli, M.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

de Riedmatten, H.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Dorenbos, S. N.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

Edwards, G.

G. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron. 16, 373–375 (1984).
[Crossref]

Fedorov, V. A.

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838–1842 (1998).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 1010–1017 (1997).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, Ion Exchange in Single Crystals for Integrated Optics and OptoelectronicsInternational Science Publishing, (Cambridge1999).

Fejer, M.

R. Roussev, X. Xie, K. Parameswaran, and M. Fejer, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in “Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the IEEE,”, vol. 1 (2003), vol. 1, pp. 338–339.

Fejer, M. M.

Foglietti, V.

S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Semiclassical motion of a multiband bloch particle in a time-dependent field: Optical visualization,” Phys. Rev. B 74, 155116 (2006).
[Crossref]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref] [PubMed]

Fritz, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Fujimura, M.

Ganguly, P.

P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, “Simulation of refractive index profiles for titanium indiffused lithium niobate channel waveguides,” Fiber Integrated Opt. 15, 135–147 (1996).
[Crossref]

Gisin, N.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Gonella, F.

Hadfield, R. H.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

Hallemeier, P.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Harvey, J.

B. Thomsen, D. Reid, R. Watts, L. Barry, and J. Harvey, “Characterization of 40-gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE T. Instrum. Meas. 53, 186–191 (2004).
[Crossref]

Jackel, J.

J. Jackel and J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

Jiang, P.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

Johnson, J.

J. Jackel and J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

Kaminow, I. P.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[Crossref]

Kissa, K.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Korkishko, Y. N.

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838–1842 (1998).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 1010–1017 (1997).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, Ion Exchange in Single Crystals for Integrated Optics and OptoelectronicsInternational Science Publishing, (Cambridge1999).

Kurz, J. R.

Lafaw, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Lahiri, S. K.

P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, “Simulation of refractive index profiles for titanium indiffused lithium niobate channel waveguides,” Fiber Integrated Opt. 15, 135–147 (1996).
[Crossref]

Laing, A.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Laporta, P.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref] [PubMed]

S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Semiclassical motion of a multiband bloch particle in a time-dependent field: Optical visualization,” Phys. Rev. B 74, 155116 (2006).
[Crossref]

Lawrence, M.

G. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron. 16, 373–375 (1984).
[Crossref]

Li, H. W.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Lobino, M.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref] [PubMed]

S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Semiclassical motion of a multiband bloch particle in a time-dependent field: Optical visualization,” Phys. Rev. B 74, 155116 (2006).
[Crossref]

Longhi, S.

S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Semiclassical motion of a multiband bloch particle in a time-dependent field: Optical visualization,” Phys. Rev. B 74, 155116 (2006).
[Crossref]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref] [PubMed]

Loni, A.

J. M. Zavada, H. C. Casey, C.-H. Chen, and A. Loni, “Correlation of refractive index profiles with substitutional hydrogen concentrations in annealed proton-exchanged linbo3 waveguides,” Appl. Phys. Lett. 62, 2769–2771 (1993).
[Crossref]

Maack, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Marangoni, M.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref] [PubMed]

S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Semiclassical motion of a multiband bloch particle in a time-dependent field: Optical visualization,” Phys. Rev. B 74, 155116 (2006).
[Crossref]

Martín-López, E.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

McBrien, G.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Mickelson, A. R.

S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[Crossref]

Morozova, T. M.

Munns, J.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Murphy, E.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Natarajan, C. M.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

Niskanen, A. O.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Nock, R. W.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

O’Brien, J. L.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

Ostrowsky, D. B.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Parameswaran, K.

R. Roussev, X. Xie, K. Parameswaran, and M. Fejer, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in “Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the IEEE,”, vol. 1 (2003), vol. 1, pp. 338–339.

Parameswaran, K. R.

Ramponi, R.

S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Semiclassical motion of a multiband bloch particle in a time-dependent field: Optical visualization,” Phys. Rev. B 74, 155116 (2006).
[Crossref]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref] [PubMed]

Rarity, J. G.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Reid, D.

B. Thomsen, D. Reid, R. Watts, L. Barry, and J. Harvey, “Characterization of 40-gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE T. Instrum. Meas. 53, 186–191 (2004).
[Crossref]

Romeny, B.

J. Weickert, B. Romeny, and M. Viergever, “Efficient and reliable schemes for nonlinear diffusion filtering,” IEEE T. Imag. Process. 7, 398–410 (1998).
[Crossref]

Roussev, R.

R. Roussev, X. Xie, K. Parameswaran, and M. Fejer, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in “Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the IEEE,”, vol. 1 (2003), vol. 1, pp. 338–339.

Roussev, R. V.

Route, R. K.

Schmidt, R. V.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[Crossref]

Segato, F.

Sen, D. C.

P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, “Simulation of refractive index profiles for titanium indiffused lithium niobate channel waveguides,” Fiber Integrated Opt. 15, 135–147 (1996).
[Crossref]

Tanner, M. G.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

Tanzilli, S.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Thompson, M. G.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

Thomsen, B.

B. Thomsen, D. Reid, R. Watts, L. Barry, and J. Harvey, “Characterization of 40-gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE T. Instrum. Meas. 53, 186–191 (2004).
[Crossref]

Tien, P. K.

Tittel, H.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Ulrich, R.

Viergever, M.

J. Weickert, B. Romeny, and M. Viergever, “Efficient and reliable schemes for nonlinear diffusion filtering,” IEEE T. Imag. Process. 7, 398–410 (1998).
[Crossref]

Vohra, S. T.

S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[Crossref]

Wabnig, J.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Watts, R.

B. Thomsen, D. Reid, R. Watts, L. Barry, and J. Harvey, “Characterization of 40-gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE T. Instrum. Meas. 53, 186–191 (2004).
[Crossref]

Weickert, J.

J. Weickert, B. Romeny, and M. Viergever, “Efficient and reliable schemes for nonlinear diffusion filtering,” IEEE T. Imag. Process. 7, 398–410 (1998).
[Crossref]

Wooten, E.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Xie, X.

R. Roussev, X. Xie, K. Parameswaran, and M. Fejer, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in “Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the IEEE,”, vol. 1 (2003), vol. 1, pp. 338–339.

Yi-Yan, A.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

Zavada, J. M.

J. M. Zavada, H. C. Casey, C.-H. Chen, and A. Loni, “Correlation of refractive index profiles with substitutional hydrogen concentrations in annealed proton-exchanged linbo3 waveguides,” Appl. Phys. Lett. 62, 2769–2771 (1993).
[Crossref]

Zbinden, H.

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Zhang, P.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Zwiller, V.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[Crossref]

J. M. Zavada, H. C. Casey, C.-H. Chen, and A. Loni, “Correlation of refractive index profiles with substitutional hydrogen concentrations in annealed proton-exchanged linbo3 waveguides,” Appl. Phys. Lett. 62, 2769–2771 (1993).
[Crossref]

Electron. Lett. (2)

S. Tanzilli, H. de Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

J. Jackel and J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

Fiber Integrated Opt. (1)

P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, “Simulation of refractive index profiles for titanium indiffused lithium niobate channel waveguides,” Fiber Integrated Opt. 15, 135–147 (1996).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quant. 6, 69–82 (2000).
[Crossref]

IEEE T. Imag. Process. (1)

J. Weickert, B. Romeny, and M. Viergever, “Efficient and reliable schemes for nonlinear diffusion filtering,” IEEE T. Imag. Process. 7, 398–410 (1998).
[Crossref]

IEEE T. Instrum. Meas. (1)

B. Thomsen, D. Reid, R. Watts, L. Barry, and J. Harvey, “Characterization of 40-gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE T. Instrum. Meas. 53, 186–191 (2004).
[Crossref]

J. Appl. Phys. (2)

Y. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 1010–1017 (1997).
[Crossref]

S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Opt. Quant. Electron. (1)

G. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron. 16, 373–375 (1984).
[Crossref]

Phys. Rev. B (1)

S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Semiclassical motion of a multiband bloch particle in a time-dependent field: Optical visualization,” Phys. Rev. B 74, 155116 (2006).
[Crossref]

Phys. Rev. Lett. (3)

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref] [PubMed]

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012).
[Crossref] [PubMed]

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Other (3)

R. Roussev, X. Xie, K. Parameswaran, and M. Fejer, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in “Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the IEEE,”, vol. 1 (2003), vol. 1, pp. 338–339.

R. V. Roussev, “Optical frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. thesis, Stanford University (2006).

Y. N. Korkishko and V. A. Fedorov, Ion Exchange in Single Crystals for Integrated Optics and OptoelectronicsInternational Science Publishing, (Cambridge1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Evolution of the refractive index change Δne and area A = Δne × de as a function of the SA time for 3 h proton exchanged samples. Circles are experimental data points for (a) X-cut and (b) Z-cut samples. Solid line is plotted as guide to the eye.
Fig. 2
Fig. 2 Proton exchange depth de as a function of time tPE for (a) X-cut and (b) Z-cut sample. Circles are data points fitted with the linear diffusion law d e = 2 D PE , X / Z t PE shown as solid line. The depths are measured after a SA time given by Eqs. (1) and (2).
Fig. 3
Fig. 3 (a) Sellmeier fitting (solid lines) and experimental data of the wavelength dependence of the refractive index change coefficient δ for (•) X-cut and (▪) Z-cut. (b) Simulated evolution of the refractive index change Δne during annealing for an X-cut planar waveguide calculated from Eq. (6). The waveguide had a PE depth de = 0.822 μm and was annealed for ta = 36 h, 44 h and 59 h. (c) Same as (b) but for Z-cut with de = 0.798 μm and ta = 25 h, 34 h and 48 h.
Fig. 4
Fig. 4 (a) Simulated evolution of the refractive index change during RPE for an X-cut planar waveguide calculated form Eq. (6). The waveguide had a PE depth de = 1.653 μm and was annealed for ta = 24 h and reverse proton exchanged for tRPE = 8 h and 11.5 h. (b) Same as (a) but for a Z-cut sample with de = 1.926 μm, ta = 17 h and tRPE = 10.8 h and 15.6 h.
Fig. 5
Fig. 5 (a) Step-like refractive index profile used as initial condition for annealing. The inset shows the undercut diffusion of H+. (b) Measured intensity profile of the guided mode at 1550 nm. (c) Calculated mode from the refractive index profile obtained by solving Eq. (8). The waveguide had a channel width of w=8 μm, de=1.75 μm, ta=26 h and tRPE=14.5 h.
Fig. 6
Fig. 6 Splitting ratio of the directional coupler. ○ are the experimental measurements and the blue-dotted line is their fitting. The red solid line is the function calculated using our model.

Tables (3)

Tables Icon

Table 1 Parameters of the diffusion coefficients and Sellmeier curves for X-cut and Z-cut LN substrates.

Tables Icon

Table 2 Root-mean-square error Δ n eff = m = 1 4 ( n eff , m calc n eff , m meas ) 2 / 4 in the calculation of the neff for waveguides shown in Fig. 3(b) and (c). All data refers to the wavelength λ =635 nm.

Tables Icon

Table 3 Root-mean-square error Δneff in the calculation of the neff for waveguides shown in Fig. 4(a) and (b). All data refers to the wavelength λ =635 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

t SA , X = 2.6 t PE for X-cut samples ,
t SA , Z = 4 t PE for Z-cut samples ,
t SA ( T 2 ) = t SA ( T 1 ) exp ( E a k b T 2 E a k b T 1 ) ,
D PE , X = 0.098 μ m 2 h 1 for X-cut samples ,
D PE , Z = 0.056 μ m 2 h 1 for Z-cut samples .
C t = y ( D a , X / Z ( C ) C y ) ,
D a , X / Z ( C ) = D 0 , X / Z ( α X / Z + 1 α X , Z β X , Z C + γ X , Z ) .
C t = y ( D a , Z ( C ) C y ) + x ( D a , X ( C ) C x ) ,

Metrics