Abstract

Based on self-consistent ensemble Monte Carlo simulations coupled to the optical field dynamics, we investigate the giant nonlinear susceptibility giving rise to terahertz difference frequency generation in quantum cascade laser structures. Specifically, the dependence on temperature, bias voltage and frequency is considered. It is shown that the optical nonlinearity is temperature insensitive and covers a broad spectral range, as required for widely tunable room temperature terahertz sources. The obtained results are consistent with available experimental data.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monte Carlo study of terahertz difference frequency generation in quantum cascade lasers

Christian Jirauschek, Alpar Matyas, Paolo Lugli, and Markus-Christian Amann
Opt. Express 21(5) 6180-6185 (2013)

High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi
Opt. Express 21(1) 968-973 (2013)

Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation

Kazuue Fujita, Masahiro Hitaka, Akio Ito, Masamichi Yamanishi, Tatsuo Dougakiuchi, and Tadataka Edamura
Opt. Express 24(15) 16357-16365 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
    [Crossref]
  2. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99, 131106 (2011).
    [Crossref]
  3. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
    [Crossref]
  4. Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101, 251121 (2012).
    [Crossref]
  5. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
    [Crossref] [PubMed]
  6. Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μ W output power through epilayer-down mounting,” Appl. Phys. Lett. 103, 011101 (2013).
    [Crossref]
  7. K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
    [Crossref]
  8. Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014).
    [Crossref]
  9. Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16, 094002 (2014).
    [Crossref]
  10. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
    [Crossref] [PubMed]
  11. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
    [Crossref]
  12. C. Jirauschek, A. Matyas, P. Lugli, and M.-C. Amann, “Monte Carlo study of terahertz difference frequency generation in quantum cascade lasers,” Opt. Express 21, 6180–6185 (2013).
    [Crossref] [PubMed]
  13. D. O. Winge, M. Lindskog, and A. Wacker, “Microscopic approach to second harmonic generation in quantum cascade lasers,” Opt. Express 22, 18389–18400 (2014).
    [Crossref]
  14. C. Jirauschek and T. Kubis, “Modeling techniques for quantum cascade lasers,” Appl. Phys. Rev. 1, 011307 (2014).
    [Crossref]
  15. R. C. Iotti and F. Rossi, “Carrier thermalization versus phonon-assisted relaxation in quantum-cascade lasers: A Monte Carlo approach,” Appl. Phys. Lett. 78, 2902–2904 (2001).
    [Crossref]
  16. X. Gao, D. Botez, and I. Knezevic, “X-valley leakage in GaAs-based midinfrared quantum cascade lasers: A Monte Carlo study,” J. Appl. Phys. 101, 063101 (2007).
    [Crossref]
  17. A. Mátyás, P. Lugli, and C. Jirauschek, “Photon-induced carrier transport in high efficiency midinfrared quantum cascade lasers,” J. Appl. Phys. 110, 013108 (2011).
    [Crossref]
  18. Y. Shi and I. Knezevic, “Nonequilibrium phonon effects in midinfrared quantum cascade lasers,” J. Appl. Phys. 116, 123105 (2014).
    [Crossref]
  19. A. Mojibpour, M. Pourfath, and H. Kosina, “Optimization study of third harmonic generation in quantum cascade lasers,” Opt. Express 22, 20607–20612 (2014).
    [Crossref]
  20. R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, “Design and simulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 79, 3920–3922 (2001).
    [Crossref]
  21. H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Analysis of transport properties of terahertz quantum cascade lasers,” Appl. Phys. Lett.  83, 207–209 (2003).
    [Crossref]
  22. O. Bonno, J.-L. Thobel, and F. Dessenne, “Modeling of electron-electron scattering in Monte Carlo simulation of quantum cascade lasers,” J. Appl. Phys. 97, 043702 (2005).
    [Crossref]
  23. J. T. Lü and J. C. Cao, “Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 89, 211115 (2006).
    [Crossref]
  24. C. Jirauschek, G. Scarpa, P. Lugli, M. S. Vitiello, and G. Scamarcio, “Comparative analysis of resonant phonon THz quantum cascade lasers,” J. Appl. Phys. 101, 086109 (2007).
    [Crossref]
  25. A. Mátyás, M. Belkin, P. Lugli, and C. Jirauschek, “Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs,” Appl. Phys. Lett. 96, 201110 (2010).
    [Crossref]
  26. A. Matyas, P. Lugli, and C. Jirauschek, “Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers,” Appl. Phys. Lett. 102, 011101 (2013).
    [Crossref]
  27. R. C. Iotti and F. Rossi, “Coupled carrier–phonon nonequilibrium dynamics in terahertz quantum cascade lasers: a Monte Carlo analysis,” New J. Phys. 15, 075027 (2013).
    [Crossref]
  28. C. Jirauschek, “Accuracy of transfer matrix approaches for solving the effective mass Schrödinger equation,” IEEE J. Quantum Electron. 45, 1059–1067 (2009).
    [Crossref]
  29. Y. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).
  30. C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys. 105, 123102 (2009).
    [Crossref]
  31. M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
    [Crossref]
  32. N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, “Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides,” IEEE J. Quantum Electron. 28, 1798–1815 (1992).
    [Crossref]
  33. C. Jirauschek, “Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers,” Appl. Phys. Lett. 96, 011103 (2010).
    [Crossref]
  34. C. Jirauschek, “Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers,” Opt. Express 18, 25922–25927 (2010).
    [Crossref]
  35. K. Chiang, “Performance of the effective-index method for the analysis of dielectric waveguides,” Opt. Lett. 16, 714–716 (1991).
    [Crossref] [PubMed]
  36. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
    [Crossref]
  37. J. Khurgin, “Second-order intersubband nonlinear-optical susceptibilities of asymmetric quantum-well structures,” J. Opt. Soc. Am. B 6, 1673–1682 (1989).
    [Crossref]
  38. E. Dupont, Z. R. Wasilewski, and H. C. Liu, “Terahertz emission in asymmetric quantum wells by frequency mixing of midinfrared waves,” IEEE J. Quantum Electron.  42, 1157–1174 (2006).
    [Crossref]

2014 (7)

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

D. O. Winge, M. Lindskog, and A. Wacker, “Microscopic approach to second harmonic generation in quantum cascade lasers,” Opt. Express 22, 18389–18400 (2014).
[Crossref]

C. Jirauschek and T. Kubis, “Modeling techniques for quantum cascade lasers,” Appl. Phys. Rev. 1, 011307 (2014).
[Crossref]

Y. Shi and I. Knezevic, “Nonequilibrium phonon effects in midinfrared quantum cascade lasers,” J. Appl. Phys. 116, 123105 (2014).
[Crossref]

A. Mojibpour, M. Pourfath, and H. Kosina, “Optimization study of third harmonic generation in quantum cascade lasers,” Opt. Express 22, 20607–20612 (2014).
[Crossref]

2013 (5)

C. Jirauschek, A. Matyas, P. Lugli, and M.-C. Amann, “Monte Carlo study of terahertz difference frequency generation in quantum cascade lasers,” Opt. Express 21, 6180–6185 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μ W output power through epilayer-down mounting,” Appl. Phys. Lett. 103, 011101 (2013).
[Crossref]

A. Matyas, P. Lugli, and C. Jirauschek, “Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers,” Appl. Phys. Lett. 102, 011101 (2013).
[Crossref]

R. C. Iotti and F. Rossi, “Coupled carrier–phonon nonequilibrium dynamics in terahertz quantum cascade lasers: a Monte Carlo analysis,” New J. Phys. 15, 075027 (2013).
[Crossref]

2012 (3)

S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101, 251121 (2012).
[Crossref]

2011 (2)

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99, 131106 (2011).
[Crossref]

A. Mátyás, P. Lugli, and C. Jirauschek, “Photon-induced carrier transport in high efficiency midinfrared quantum cascade lasers,” J. Appl. Phys. 110, 013108 (2011).
[Crossref]

2010 (3)

A. Mátyás, M. Belkin, P. Lugli, and C. Jirauschek, “Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs,” Appl. Phys. Lett. 96, 201110 (2010).
[Crossref]

C. Jirauschek, “Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers,” Appl. Phys. Lett. 96, 011103 (2010).
[Crossref]

C. Jirauschek, “Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers,” Opt. Express 18, 25922–25927 (2010).
[Crossref]

2009 (2)

C. Jirauschek, “Accuracy of transfer matrix approaches for solving the effective mass Schrödinger equation,” IEEE J. Quantum Electron. 45, 1059–1067 (2009).
[Crossref]

C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys. 105, 123102 (2009).
[Crossref]

2008 (1)

M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

2007 (3)

X. Gao, D. Botez, and I. Knezevic, “X-valley leakage in GaAs-based midinfrared quantum cascade lasers: A Monte Carlo study,” J. Appl. Phys. 101, 063101 (2007).
[Crossref]

M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

C. Jirauschek, G. Scarpa, P. Lugli, M. S. Vitiello, and G. Scamarcio, “Comparative analysis of resonant phonon THz quantum cascade lasers,” J. Appl. Phys. 101, 086109 (2007).
[Crossref]

2006 (3)

E. Dupont, Z. R. Wasilewski, and H. C. Liu, “Terahertz emission in asymmetric quantum wells by frequency mixing of midinfrared waves,” IEEE J. Quantum Electron.  42, 1157–1174 (2006).
[Crossref]

J. T. Lü and J. C. Cao, “Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 89, 211115 (2006).
[Crossref]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

2005 (2)

O. Bonno, J.-L. Thobel, and F. Dessenne, “Modeling of electron-electron scattering in Monte Carlo simulation of quantum cascade lasers,” J. Appl. Phys. 97, 043702 (2005).
[Crossref]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[Crossref]

2003 (1)

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Analysis of transport properties of terahertz quantum cascade lasers,” Appl. Phys. Lett.  83, 207–209 (2003).
[Crossref]

2001 (2)

R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, “Design and simulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 79, 3920–3922 (2001).
[Crossref]

R. C. Iotti and F. Rossi, “Carrier thermalization versus phonon-assisted relaxation in quantum-cascade lasers: A Monte Carlo approach,” Appl. Phys. Lett. 78, 2902–2904 (2001).
[Crossref]

1992 (1)

N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, “Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides,” IEEE J. Quantum Electron. 28, 1798–1815 (1992).
[Crossref]

1991 (1)

1989 (1)

Adams, R. W.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Amann, M. C.

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Amann, M.-C.

Bai, Y.

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μ W output power through epilayer-down mounting,” Appl. Phys. Lett. 103, 011101 (2013).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101, 251121 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99, 131106 (2011).
[Crossref]

Ban, D.

Bandyopadhyay, N.

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μ W output power through epilayer-down mounting,” Appl. Phys. Lett. 103, 011101 (2013).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101, 251121 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99, 131106 (2011).
[Crossref]

Belkin, M.

A. Mátyás, M. Belkin, P. Lugli, and C. Jirauschek, “Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs,” Appl. Phys. Lett. 96, 201110 (2010).
[Crossref]

M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Belkin, M. A.

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Belyanin, A.

M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Boehm, G.

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Bonno, O.

O. Bonno, J.-L. Thobel, and F. Dessenne, “Modeling of electron-electron scattering in Monte Carlo simulation of quantum cascade lasers,” J. Appl. Phys. 97, 043702 (2005).
[Crossref]

Botez, D.

X. Gao, D. Botez, and I. Knezevic, “X-valley leakage in GaAs-based midinfrared quantum cascade lasers: A Monte Carlo study,” J. Appl. Phys. 101, 063101 (2007).
[Crossref]

Callebaut, H.

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Analysis of transport properties of terahertz quantum cascade lasers,” Appl. Phys. Lett.  83, 207–209 (2003).
[Crossref]

Cao, J. C.

J. T. Lü and J. C. Cao, “Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 89, 211115 (2006).
[Crossref]

Capasso, F.

M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Chan, C.

Chiang, K.

Cho, A.

M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Choutagunta, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Demmerle, F.

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Dessenne, F.

O. Bonno, J.-L. Thobel, and F. Dessenne, “Modeling of electron-electron scattering in Monte Carlo simulation of quantum cascade lasers,” J. Appl. Phys. 97, 043702 (2005).
[Crossref]

Dupont, E.

Faist, J.

M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

Fathololoumi, S.

Fischer, M.

M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

Gao, X.

X. Gao, D. Botez, and I. Knezevic, “X-valley leakage in GaAs-based midinfrared quantum cascade lasers: A Monte Carlo study,” J. Appl. Phys. 101, 063101 (2007).
[Crossref]

Grasse, C.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Hashizume, N.

N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, “Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides,” IEEE J. Quantum Electron. 28, 1798–1815 (1992).
[Crossref]

Hu, Q.

S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[Crossref]

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Analysis of transport properties of terahertz quantum cascade lasers,” Appl. Phys. Lett.  83, 207–209 (2003).
[Crossref]

Iotti, R. C.

R. C. Iotti and F. Rossi, “Coupled carrier–phonon nonequilibrium dynamics in terahertz quantum cascade lasers: a Monte Carlo analysis,” New J. Phys. 15, 075027 (2013).
[Crossref]

R. C. Iotti and F. Rossi, “Carrier thermalization versus phonon-assisted relaxation in quantum-cascade lasers: A Monte Carlo approach,” Appl. Phys. Lett. 78, 2902–2904 (2001).
[Crossref]

R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, “Design and simulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 79, 3920–3922 (2001).
[Crossref]

Ito, R.

N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, “Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides,” IEEE J. Quantum Electron. 28, 1798–1815 (1992).
[Crossref]

Jang, M.

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Jiang, A.

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jiang, Y.

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jirauschek, C.

C. Jirauschek and T. Kubis, “Modeling techniques for quantum cascade lasers,” Appl. Phys. Rev. 1, 011307 (2014).
[Crossref]

A. Matyas, P. Lugli, and C. Jirauschek, “Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers,” Appl. Phys. Lett. 102, 011101 (2013).
[Crossref]

C. Jirauschek, A. Matyas, P. Lugli, and M.-C. Amann, “Monte Carlo study of terahertz difference frequency generation in quantum cascade lasers,” Opt. Express 21, 6180–6185 (2013).
[Crossref] [PubMed]

S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

A. Mátyás, P. Lugli, and C. Jirauschek, “Photon-induced carrier transport in high efficiency midinfrared quantum cascade lasers,” J. Appl. Phys. 110, 013108 (2011).
[Crossref]

C. Jirauschek, “Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers,” Opt. Express 18, 25922–25927 (2010).
[Crossref]

C. Jirauschek, “Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers,” Appl. Phys. Lett. 96, 011103 (2010).
[Crossref]

A. Mátyás, M. Belkin, P. Lugli, and C. Jirauschek, “Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs,” Appl. Phys. Lett. 96, 201110 (2010).
[Crossref]

C. Jirauschek, “Accuracy of transfer matrix approaches for solving the effective mass Schrödinger equation,” IEEE J. Quantum Electron. 45, 1059–1067 (2009).
[Crossref]

C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys. 105, 123102 (2009).
[Crossref]

C. Jirauschek, G. Scarpa, P. Lugli, M. S. Vitiello, and G. Scamarcio, “Comparative analysis of resonant phonon THz quantum cascade lasers,” J. Appl. Phys. 101, 086109 (2007).
[Crossref]

Jung, S.

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

Khurgin, J.

Knezevic, I.

Y. Shi and I. Knezevic, “Nonequilibrium phonon effects in midinfrared quantum cascade lasers,” J. Appl. Phys. 116, 123105 (2014).
[Crossref]

X. Gao, D. Botez, and I. Knezevic, “X-valley leakage in GaAs-based midinfrared quantum cascade lasers: A Monte Carlo study,” J. Appl. Phys. 101, 063101 (2007).
[Crossref]

Kohen, S.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[Crossref]

Köhler, R.

R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, “Design and simulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 79, 3920–3922 (2001).
[Crossref]

Kondo, T.

N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, “Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides,” IEEE J. Quantum Electron. 28, 1798–1815 (1992).
[Crossref]

Kosina, H.

Kubis, T.

C. Jirauschek and T. Kubis, “Modeling techniques for quantum cascade lasers,” Appl. Phys. Rev. 1, 011307 (2014).
[Crossref]

Kumar, S.

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Analysis of transport properties of terahertz quantum cascade lasers,” Appl. Phys. Lett.  83, 207–209 (2003).
[Crossref]

Laframboise, S.

Lindskog, M.

Liu, H.

Liu, H. C.

E. Dupont, Z. R. Wasilewski, and H. C. Liu, “Terahertz emission in asymmetric quantum wells by frequency mixing of midinfrared waves,” IEEE J. Quantum Electron.  42, 1157–1174 (2006).
[Crossref]

Lu, Q.

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μ W output power through epilayer-down mounting,” Appl. Phys. Lett. 103, 011101 (2013).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101, 251121 (2012).
[Crossref]

Lu, Q. Y.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99, 131106 (2011).
[Crossref]

Lü, J. T.

J. T. Lü and J. C. Cao, “Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 89, 211115 (2006).
[Crossref]

Lugli, P.

A. Matyas, P. Lugli, and C. Jirauschek, “Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers,” Appl. Phys. Lett. 102, 011101 (2013).
[Crossref]

C. Jirauschek, A. Matyas, P. Lugli, and M.-C. Amann, “Monte Carlo study of terahertz difference frequency generation in quantum cascade lasers,” Opt. Express 21, 6180–6185 (2013).
[Crossref] [PubMed]

A. Mátyás, P. Lugli, and C. Jirauschek, “Photon-induced carrier transport in high efficiency midinfrared quantum cascade lasers,” J. Appl. Phys. 110, 013108 (2011).
[Crossref]

A. Mátyás, M. Belkin, P. Lugli, and C. Jirauschek, “Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs,” Appl. Phys. Lett. 96, 201110 (2010).
[Crossref]

C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys. 105, 123102 (2009).
[Crossref]

C. Jirauschek, G. Scarpa, P. Lugli, M. S. Vitiello, and G. Scamarcio, “Comparative analysis of resonant phonon THz quantum cascade lasers,” J. Appl. Phys. 101, 086109 (2007).
[Crossref]

Matyas, A.

A. Matyas, P. Lugli, and C. Jirauschek, “Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers,” Appl. Phys. Lett. 102, 011101 (2013).
[Crossref]

C. Jirauschek, A. Matyas, P. Lugli, and M.-C. Amann, “Monte Carlo study of terahertz difference frequency generation in quantum cascade lasers,” Opt. Express 21, 6180–6185 (2013).
[Crossref] [PubMed]

Mátyás, A.

S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

A. Mátyás, P. Lugli, and C. Jirauschek, “Photon-induced carrier transport in high efficiency midinfrared quantum cascade lasers,” J. Appl. Phys. 110, 013108 (2011).
[Crossref]

A. Mátyás, M. Belkin, P. Lugli, and C. Jirauschek, “Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs,” Appl. Phys. Lett. 96, 201110 (2010).
[Crossref]

Mojibpour, A.

Oakley, D.

M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Ogasawara, N.

N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, “Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides,” IEEE J. Quantum Electron. 28, 1798–1815 (1992).
[Crossref]

Onda, T.

N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, “Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides,” IEEE J. Quantum Electron. 28, 1798–1815 (1992).
[Crossref]

Pourfath, M.

Razeghi, M.

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μ W output power through epilayer-down mounting,” Appl. Phys. Lett. 103, 011101 (2013).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101, 251121 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99, 131106 (2011).
[Crossref]

Reno, J. L.

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Analysis of transport properties of terahertz quantum cascade lasers,” Appl. Phys. Lett.  83, 207–209 (2003).
[Crossref]

Rossi, F.

R. C. Iotti and F. Rossi, “Coupled carrier–phonon nonequilibrium dynamics in terahertz quantum cascade lasers: a Monte Carlo analysis,” New J. Phys. 15, 075027 (2013).
[Crossref]

R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, “Design and simulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 79, 3920–3922 (2001).
[Crossref]

R. C. Iotti and F. Rossi, “Carrier thermalization versus phonon-assisted relaxation in quantum-cascade lasers: A Monte Carlo approach,” Appl. Phys. Lett. 78, 2902–2904 (2001).
[Crossref]

Scamarcio, G.

C. Jirauschek, G. Scarpa, P. Lugli, M. S. Vitiello, and G. Scamarcio, “Comparative analysis of resonant phonon THz quantum cascade lasers,” J. Appl. Phys. 101, 086109 (2007).
[Crossref]

Scarpa, G.

C. Jirauschek, G. Scarpa, P. Lugli, M. S. Vitiello, and G. Scamarcio, “Comparative analysis of resonant phonon THz quantum cascade lasers,” J. Appl. Phys. 101, 086109 (2007).
[Crossref]

Shen, Y.

Y. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).

Shi, Y.

Y. Shi and I. Knezevic, “Nonequilibrium phonon effects in midinfrared quantum cascade lasers,” J. Appl. Phys. 116, 123105 (2014).
[Crossref]

Sivco, D.

M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Slivken, S.

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μ W output power through epilayer-down mounting,” Appl. Phys. Lett. 103, 011101 (2013).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101, 251121 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99, 131106 (2011).
[Crossref]

Thobel, J.-L.

O. Bonno, J.-L. Thobel, and F. Dessenne, “Modeling of electron-electron scattering in Monte Carlo simulation of quantum cascade lasers,” J. Appl. Phys. 97, 043702 (2005).
[Crossref]

Tredicucci, A.

R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, “Design and simulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 79, 3920–3922 (2001).
[Crossref]

Troccoli, M.

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

Turner, G.

M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Umegaki, S.

N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, “Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides,” IEEE J. Quantum Electron. 28, 1798–1815 (1992).
[Crossref]

Vijayraghavan, K.

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Vineis, C.

M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Vitiello, M. S.

C. Jirauschek, G. Scarpa, P. Lugli, M. S. Vitiello, and G. Scamarcio, “Comparative analysis of resonant phonon THz quantum cascade lasers,” J. Appl. Phys. 101, 086109 (2007).
[Crossref]

Vizbaras, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Wacker, A.

Wang, X.

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

Wasilewski, Z.

Wasilewski, Z. R.

E. Dupont, Z. R. Wasilewski, and H. C. Liu, “Terahertz emission in asymmetric quantum wells by frequency mixing of midinfrared waves,” IEEE J. Quantum Electron.  42, 1157–1174 (2006).
[Crossref]

Williams, B. S.

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[Crossref]

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Analysis of transport properties of terahertz quantum cascade lasers,” Appl. Phys. Lett.  83, 207–209 (2003).
[Crossref]

Winge, D. O.

Wittmann, A.

M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

Xie, F.

M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

Appl. Phys. Lett (1)

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Analysis of transport properties of terahertz quantum cascade lasers,” Appl. Phys. Lett.  83, 207–209 (2003).
[Crossref]

Appl. Phys. Lett. (12)

J. T. Lü and J. C. Cao, “Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 89, 211115 (2006).
[Crossref]

A. Mátyás, M. Belkin, P. Lugli, and C. Jirauschek, “Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs,” Appl. Phys. Lett. 96, 201110 (2010).
[Crossref]

A. Matyas, P. Lugli, and C. Jirauschek, “Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers,” Appl. Phys. Lett. 102, 011101 (2013).
[Crossref]

C. Jirauschek, “Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers,” Appl. Phys. Lett. 96, 011103 (2010).
[Crossref]

M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99, 131106 (2011).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101, 251121 (2012).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μ W output power through epilayer-down mounting,” Appl. Phys. Lett. 103, 011101 (2013).
[Crossref]

Q. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014).
[Crossref]

R. C. Iotti and F. Rossi, “Carrier thermalization versus phonon-assisted relaxation in quantum-cascade lasers: A Monte Carlo approach,” Appl. Phys. Lett. 78, 2902–2904 (2001).
[Crossref]

R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, “Design and simulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 79, 3920–3922 (2001).
[Crossref]

Appl. Phys. Rev. (1)

C. Jirauschek and T. Kubis, “Modeling techniques for quantum cascade lasers,” Appl. Phys. Rev. 1, 011307 (2014).
[Crossref]

Electron. Lett. (1)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

IEEE J. Quantum Electron (1)

E. Dupont, Z. R. Wasilewski, and H. C. Liu, “Terahertz emission in asymmetric quantum wells by frequency mixing of midinfrared waves,” IEEE J. Quantum Electron.  42, 1157–1174 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, “Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides,” IEEE J. Quantum Electron. 28, 1798–1815 (1992).
[Crossref]

C. Jirauschek, “Accuracy of transfer matrix approaches for solving the effective mass Schrödinger equation,” IEEE J. Quantum Electron. 45, 1059–1067 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

J. Appl. Phys. (7)

X. Gao, D. Botez, and I. Knezevic, “X-valley leakage in GaAs-based midinfrared quantum cascade lasers: A Monte Carlo study,” J. Appl. Phys. 101, 063101 (2007).
[Crossref]

A. Mátyás, P. Lugli, and C. Jirauschek, “Photon-induced carrier transport in high efficiency midinfrared quantum cascade lasers,” J. Appl. Phys. 110, 013108 (2011).
[Crossref]

Y. Shi and I. Knezevic, “Nonequilibrium phonon effects in midinfrared quantum cascade lasers,” J. Appl. Phys. 116, 123105 (2014).
[Crossref]

C. Jirauschek, G. Scarpa, P. Lugli, M. S. Vitiello, and G. Scamarcio, “Comparative analysis of resonant phonon THz quantum cascade lasers,” J. Appl. Phys. 101, 086109 (2007).
[Crossref]

O. Bonno, J.-L. Thobel, and F. Dessenne, “Modeling of electron-electron scattering in Monte Carlo simulation of quantum cascade lasers,” J. Appl. Phys. 97, 043702 (2005).
[Crossref]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[Crossref]

C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys. 105, 123102 (2009).
[Crossref]

J. Opt. (1)

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

New J. Phys. (1)

R. C. Iotti and F. Rossi, “Coupled carrier–phonon nonequilibrium dynamics in terahertz quantum cascade lasers: a Monte Carlo analysis,” New J. Phys. 15, 075027 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Other (1)

Y. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Bias and temperature dependence of the physical quantities governing the THz output power, Eq. (2): (a) Nonlinear susceptibility; (b) waveguide loss coefficient; (c) MIR power product; (d) resulting THz output power; (e) conversion efficiency; (f) figure of merit for difference frequency generation.
Fig. 2
Fig. 2 (a) Nonlinear susceptibility vs. applied bias, as obtained with Eq. (1) (solid) and Eq. (3) (dashed), and contributions of individual subband triplets to Eq. (3) (dotted). (b) Subband energies, expressed in terms of frequency, vs. bias. (c) Conduction band profile and probability densities at 39kV/cm.
Fig. 3
Fig. 3 (a) Simulated relative level occupation (crosses) and level broadening (points) for two QCL periods at 39kV/cm. (b) and (c) Diagram illustrating near-resonant DFG between QCL subbands with (b) ω1 ≈ ω13, ω2 ≈ ω12, ω3 ≈ ω23, and (c) ω1 ≈ ω13, ω2 ≈ ω23, ω3 ≈ ω12.
Fig. 4
Fig. 4 Nonlinear susceptibility for the (a) 8.2μm and (b) 9.2μm design and THz absorption coefficent for the (c) 8.2μm and (d) 9.2μm design as a function of the applied bias and frequency detuning.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

χ ( 2 ) = e 3 π 4 ε 0 L P , m , n m * z m z m n z n 0 f ( K m n K m n ) d ε ,
K m n = ( 1 ω n i γ n ω 3 + 1 ω n m + i γ n m + ω 3 ) ( 1 ω m i γ m + ω 2 + 1 ω m i γ m ω 1 ) .
P THz = T f ω 3 2 8 ε 0 c 3 n 1 n 2 n 3 | χ ( 2 ) | 2 P 1 P 2 S eff ( Δ k 2 + a w 2 / 4 ) .
χ ( 2 ) = e 3 L P 2 ε 0 , m , n n s z m z m n z n ( K m n K m n ) ,
χ ( 2 ) = e 3 L P 2 ε 0 z 12 z 23 z 31 ω ω 23 + i γ 23 ( n 1 s n 2 s ω 12 + i γ 12 ω 2 + n 1 s n 3 s ω 1 ω 13 + i γ 13 ) .
χ ( 2 ) = e 3 L P 2 ε 0 z 12 z 23 z 31 ω ω 12 + i γ 12 ( n 2 s n 3 s ω 23 + i γ 23 ω 2 + n 1 s n 3 s ω 1 ω 13 + i γ 13 ) .

Metrics