Abstract

Potential visible light communication (VLC) data rates at over 10 Gb/s have been recently demonstrated using light emitting diodes (LEDs). The disadvantage is, LEDs have an inherent trade-off between optical efficiency and bandwidth. Consequently, laser diodes (LDs) can be considered as a very promising alternative for better utilization of the visible light spectrum for communication purposes. This work investigates the communication capabilities of off-the-shelf LDs in a number of scenarios with illumination constraints. The results indicate that optical wireless access data rates in the excess of 100 Gb/s are possible at standard indoor illumination levels.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resource allocation in a multi-color DS-OCDMA VLC cellular architecture

Marwan Hammouda, Anna Maria Vegni, Jürgen Peissig, and Mauro Biagi
Opt. Express 26(5) 5940-5961 (2018)

10  Gbps Mobile Visible Light Communication System Employing Angle Diversity, Imaging Receivers, and Relay Nodes

Ahmed Taha Hussein and Jaafar M. H. Elmirghani
J. Opt. Commun. Netw. 7(8) 718-735 (2015)

Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication

Bilal Janjua, Hassan M. Oubei, Jose R. Durán Retamal, Tien Khee Ng, Cheng-Ting Tsai, Huai-Yung Wang, Yu-Chieh Chi, Hao-Chung Kuo, Gong-Ru Lin, Jr-Hau He, and Boon S. Ooi
Opt. Express 23(14) 18746-18753 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Cisco white paper, “Cisco Visual Networking Index: Forecast and Methodology, 20132018,” (Cisco, 2013), http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
  2. L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011)
    [Crossref]
  3. W. Keusgen, A. Kortke, M. Peter, and R. Weiler, “A highly flexible digital radio testbed and 60 GHz application examples,” in Proceedings of European Microwave Conference, (2013), pp. 740–743.
  4. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
    [Crossref]
  5. G. Cossu, A.M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20, B501–B506 (2012).
    [Crossref] [PubMed]
  6. D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
    [Crossref]
  7. J. Grubor, S. Randel, K. Langer, and J. Walewski, “Bandwidth efficient indoor optical wireless communications with white light emitting diodes,” in Proceedings of IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, (IEEE, 2008), pp. 165–169.
  8. R.G. Baets, D.G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant-cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).
  9. A. Neumann, J.J. Wierer, W. Davis, Y. Ohno, S.R.J. Brueck, and J.Y. Tsao, “Four-color laser white illuminant demonstrating high colour-rendering quality,” Opt. Express 19, A982–A990 (2011).
    [Crossref]
  10. H. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett. 22, 1598–1600 (2010).
    [Crossref]
  11. T. Borogovac and T.D.C. Little, “Laser visible light communications,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series, (IEEE, 2012), pp. 117–118.
  12. H.E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” in Proceedings of IEEE Global Telecommunications Conference, (IEEE, 2001), pp. 369–374.
  13. ITU-T, “Forward error correction for high bit-rate DWDM submarine systems,” (ITU, 2004), http://www.itu.int/rec/T-REC-G.975.1-200402-I/en
  14. D.R. Wulfinghoff, Energy Efficiency Manual (Energy Institute, 1999), pp. 1425–1426.
  15. C. Chen, M. Ijaz, D. Tsonev, and H. Haas, “Analysis of downlink transmission in DCO-OFDM-based optical attocell networks,” in Proceedings of IEEE Global Communications Conference, (IEEE, 2014), (to be published).

2014 (1)

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

2012 (2)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

G. Cossu, A.M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20, B501–B506 (2012).
[Crossref] [PubMed]

2011 (2)

A. Neumann, J.J. Wierer, W. Davis, Y. Ohno, S.R.J. Brueck, and J.Y. Tsao, “Four-color laser white illuminant demonstrating high colour-rendering quality,” Opt. Express 19, A982–A990 (2011).
[Crossref]

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011)
[Crossref]

2010 (1)

H. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett. 22, 1598–1600 (2010).
[Crossref]

2003 (1)

R.G. Baets, D.G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant-cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).

Baets, R.G.

R.G. Baets, D.G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant-cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).

Bienstman, P.

R.G. Baets, D.G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant-cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).

Bockstaele, R.

R.G. Baets, D.G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant-cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).

Borogovac, T.

T. Borogovac and T.D.C. Little, “Laser visible light communications,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series, (IEEE, 2012), pp. 117–118.

Bouchet, O.

H. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett. 22, 1598–1600 (2010).
[Crossref]

Brueck, S.R.J.

Chen, C.

C. Chen, M. Ijaz, D. Tsonev, and H. Haas, “Analysis of downlink transmission in DCO-OFDM-based optical attocell networks,” in Proceedings of IEEE Global Communications Conference, (IEEE, 2014), (to be published).

Choudhury, P.

G. Cossu, A.M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20, B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

Chun, H.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

G. Cossu, A.M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20, B501–B506 (2012).
[Crossref] [PubMed]

Corsini, R.

G. Cossu, A.M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20, B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

G. Cossu, A.M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20, B501–B506 (2012).
[Crossref] [PubMed]

Davis, W.

Dawson, M.D.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Delbeke, D.G.

R.G. Baets, D.G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant-cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).

Faulkner, G.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

H. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett. 22, 1598–1600 (2010).
[Crossref]

Grobe, L.

H. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett. 22, 1598–1600 (2010).
[Crossref]

Grubor, J.

J. Grubor, S. Randel, K. Langer, and J. Walewski, “Bandwidth efficient indoor optical wireless communications with white light emitting diodes,” in Proceedings of IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, (IEEE, 2008), pp. 165–169.

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Gyongyosi, L.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011)
[Crossref]

Haas, H.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011)
[Crossref]

C. Chen, M. Ijaz, D. Tsonev, and H. Haas, “Analysis of downlink transmission in DCO-OFDM-based optical attocell networks,” in Proceedings of IEEE Global Communications Conference, (IEEE, 2014), (to be published).

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Hanzo, L.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011)
[Crossref]

Ijaz, M.

C. Chen, M. Ijaz, D. Tsonev, and H. Haas, “Analysis of downlink transmission in DCO-OFDM-based optical attocell networks,” in Proceedings of IEEE Global Communications Conference, (IEEE, 2014), (to be published).

Imre, S.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011)
[Crossref]

Kelly, A.E.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Keusgen, W.

W. Keusgen, A. Kortke, M. Peter, and R. Weiler, “A highly flexible digital radio testbed and 60 GHz application examples,” in Proceedings of European Microwave Conference, (2013), pp. 740–743.

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

Khalid, A.M.

Kortke, A.

W. Keusgen, A. Kortke, M. Peter, and R. Weiler, “A highly flexible digital radio testbed and 60 GHz application examples,” in Proceedings of European Microwave Conference, (2013), pp. 740–743.

Langer, K.

J. Grubor, S. Randel, K. Langer, and J. Walewski, “Bandwidth efficient indoor optical wireless communications with white light emitting diodes,” in Proceedings of IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, (IEEE, 2008), pp. 165–169.

Levin, H.E.

H.E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” in Proceedings of IEEE Global Telecommunications Conference, (IEEE, 2001), pp. 369–374.

Li, J.

H. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett. 22, 1598–1600 (2010).
[Crossref]

Little, T.D.C.

T. Borogovac and T.D.C. Little, “Laser visible light communications,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series, (IEEE, 2012), pp. 117–118.

McKendry, J.J.D.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Minh, H.

H. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett. 22, 1598–1600 (2010).
[Crossref]

Neumann, A.

O’Brien, D.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011)
[Crossref]

H. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett. 22, 1598–1600 (2010).
[Crossref]

Ohno, Y.

Peter, M.

W. Keusgen, A. Kortke, M. Peter, and R. Weiler, “A highly flexible digital radio testbed and 60 GHz application examples,” in Proceedings of European Microwave Conference, (2013), pp. 740–743.

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Randel, S.

J. Grubor, S. Randel, K. Langer, and J. Walewski, “Bandwidth efficient indoor optical wireless communications with white light emitting diodes,” in Proceedings of IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, (IEEE, 2008), pp. 165–169.

Rupp, M.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011)
[Crossref]

Tsao, J.Y.

Tsonev, D.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

C. Chen, M. Ijaz, D. Tsonev, and H. Haas, “Analysis of downlink transmission in DCO-OFDM-based optical attocell networks,” in Proceedings of IEEE Global Communications Conference, (IEEE, 2014), (to be published).

Videv, S.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Walewski, J.

J. Grubor, S. Randel, K. Langer, and J. Walewski, “Bandwidth efficient indoor optical wireless communications with white light emitting diodes,” in Proceedings of IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, (IEEE, 2008), pp. 165–169.

Watson, S.

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Weiler, R.

W. Keusgen, A. Kortke, M. Peter, and R. Weiler, “A highly flexible digital radio testbed and 60 GHz application examples,” in Proceedings of European Microwave Conference, (2013), pp. 740–743.

Wierer, J.J.

Wolf, M.

H. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett. 22, 1598–1600 (2010).
[Crossref]

Wulfinghoff, D.R.

D.R. Wulfinghoff, Energy Efficiency Manual (Energy Institute, 1999), pp. 1425–1426.

IEEE Photon. J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a Gallium Nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

H. Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photon. Technol. Lett. 22, 1598–1600 (2010).
[Crossref]

Opt. Express (2)

Proc. IEEE (1)

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011)
[Crossref]

Proc. SPIE (1)

R.G. Baets, D.G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant-cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).

Other (8)

Cisco white paper, “Cisco Visual Networking Index: Forecast and Methodology, 20132018,” (Cisco, 2013), http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf

J. Grubor, S. Randel, K. Langer, and J. Walewski, “Bandwidth efficient indoor optical wireless communications with white light emitting diodes,” in Proceedings of IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, (IEEE, 2008), pp. 165–169.

W. Keusgen, A. Kortke, M. Peter, and R. Weiler, “A highly flexible digital radio testbed and 60 GHz application examples,” in Proceedings of European Microwave Conference, (2013), pp. 740–743.

T. Borogovac and T.D.C. Little, “Laser visible light communications,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series, (IEEE, 2012), pp. 117–118.

H.E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” in Proceedings of IEEE Global Telecommunications Conference, (IEEE, 2001), pp. 369–374.

ITU-T, “Forward error correction for high bit-rate DWDM submarine systems,” (ITU, 2004), http://www.itu.int/rec/T-REC-G.975.1-200402-I/en

D.R. Wulfinghoff, Energy Efficiency Manual (Energy Institute, 1999), pp. 1425–1426.

C. Chen, M. Ijaz, D. Tsonev, and H. Haas, “Analysis of downlink transmission in DCO-OFDM-based optical attocell networks,” in Proceedings of IEEE Global Communications Conference, (IEEE, 2014), (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental set-up.
Fig. 2
Fig. 2 Characteristics of the generated white light. Measurements have been taken with a Labsphere spectral irradiance receiver head (E1000) at a distance of 30cm for a light spot radius of 6cm. The achieved colour temperature is approximately 8000° K as indicated by the black spot on the chromaticity diagram.
Fig. 3
Fig. 3 Frequency response of the proposed system.

Tables (1)

Tables Icon

Table 1 Summary of Results.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = k = 0 M k > 0 N fft 2 1 log 2 M k N fft + N cp ( 1 + β ) bits / s / Hz ,
B = 1 2 T s ( 1 + β ) Hz .
D = 2 B η bits / s .
σ 2 = 2 k = 0 N fft 2 1 E b k log 2 M k N fft ,

Metrics