Abstract

Surface texturing is demonstrated by the combination of wet etching and ultrafast laser nanostructuring of silica glass. Using potassium hydroxide (KOH) at room temperature as an etchant of laser modified glass, we show the polarization dependent linear increase in retardance reaching a threefold value within 25 hours. The dispersion control of birefringence by the etching procedure led to achromatic behaviour over the entire visible spectral range. The mechanism of enhanced KOH etching selectivity after femtosecond laser exposure is discussed and correlated to the formation of various laser-induced defects, such as silicon-rich oxygen deficiency and color centers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimisation of ultrafast laser assisted etching in fused silica

Calum A. Ross, David G. MacLachlan, Debaditya Choudhury, and Robert R. Thomson
Opt. Express 26(19) 24343-24356 (2018)

Examination of femtosecond laser matter interaction in multipulse regime for surface nanopatterning of vitreous substrates

Nadezda Varkentina, Thierry Cardinal, Fabien Moroté, Patrick Mounaix, Pascal André, Yannick Deshayes, and Lionel Canioni
Opt. Express 21(24) 29090-29100 (2013)

Femtosecond laser induced selective etching in fused silica: optimization of the inscription conditions with a high-repetition-rate laser source

Jia Qi, Zhenhua Wang, Jian Xu, Zijie Lin, Xiaolong Li, Wei Chu, and Ya Cheng
Opt. Express 26(23) 29669-29678 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  3. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1-2), 26–46 (2008).
    [Crossref]
  4. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1(5), 998 (2011).
    [Crossref]
  5. V. Oliveira, S. P. Sharma, P. Herrero, and R. Vilar, “Transformations induced in bulk amorphous silica by ultrafast laser direct writing,” Opt. Lett. 38(23), 4950–4953 (2013).
    [Crossref] [PubMed]
  6. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  7. J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
    [Crossref] [PubMed]
  8. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref] [PubMed]
  9. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
    [Crossref] [PubMed]
  10. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1549–1553 (2004).
    [Crossref]
  11. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
    [Crossref]
  12. M. Hörstmann-Jungemann, J. Gottmann, and D. Wortmann, “Nano- and microstructuring of SiO2 and sapphire with fs-laser induced selective etching,” J. Laser Micro/Nanoeng. 4, 135–140 (2009).
    [Crossref]
  13. F. Venturini, M. Sansotera, R. M. Vazquez, R. Osellame, G. Cerullo, and W. Navarrini, “Micromanufacturing in fused silica via femtosecond laser irradiation followed by gas-phase chemical etching,” Micromachines 3(4), 604–614 (2012).
    [Crossref]
  14. C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
    [Crossref] [PubMed]
  15. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
    [Crossref] [PubMed]
  16. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
    [Crossref] [PubMed]
  17. Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
    [Crossref] [PubMed]
  18. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
    [Crossref]
  19. S. Ho, M. Haque, P. R. Herman, and J. S. Aitchison, “Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica,” Opt. Lett. 37(10), 1682–1684 (2012).
    [Crossref] [PubMed]
  20. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express 16(24), 19520–19534 (2008).
    [Crossref] [PubMed]
  21. S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express 18(20), 21490–21497 (2010).
    [Crossref] [PubMed]
  22. S. Juodkazis, Y. Nishi, and H. Misawa, ““Femtosecond laser-assisted formation of channels in sapphire using KOH solution,” Phys,” Status Solidi-R 2(6), 275–277 (2008).
    [Crossref]
  23. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
    [Crossref]
  24. S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
    [Crossref]
  25. M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro/Nanoeng. 9, 126–131 (2014).
    [Crossref]
  26. M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
    [Crossref]
  27. D. J. Stokes, Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM) (John Wiley & Sons, Ltd, 2008).
  28. A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
    [Crossref] [PubMed]
  29. P. M. Dove, N. Han, A. F. Wallace, and J. J. De Yoreo, “Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs,” Proc. Natl. Acad. Sci. U.S.A. 105(29), 9903–9908 (2008).
    [Crossref] [PubMed]
  30. J. Gratz and P. Bird, “Quartz dissolution : theory of rough and smooth surfaces,” Geochim. Cosmochim. Acta 57(5), 977–989 (1993).
    [Crossref]
  31. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [Crossref]
  32. H. Seidel, L. Csepregi, A. Heuberger, and H. Boumgortel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
    [Crossref]
  33. J. Kerr, Handbook of chemistry and physics, 81st ed. (CRC, 2000).
  34. M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, and P. G. Kazansky, “Extraordinary anisotropy of ultrafast laser writing in glass,” Opt. Express 21(4), 3959–3968 (2013).
    [Crossref] [PubMed]
  35. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36(7), 1566–1572 (1997).
    [Crossref] [PubMed]
  36. M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
    [Crossref] [PubMed]
  37. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]

2014 (2)

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2013 (7)

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, and P. G. Kazansky, “Extraordinary anisotropy of ultrafast laser writing in glass,” Opt. Express 21(4), 3959–3968 (2013).
[Crossref] [PubMed]

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref] [PubMed]

V. Oliveira, S. P. Sharma, P. Herrero, and R. Vilar, “Transformations induced in bulk amorphous silica by ultrafast laser direct writing,” Opt. Lett. 38(23), 4950–4953 (2013).
[Crossref] [PubMed]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref] [PubMed]

2012 (2)

F. Venturini, M. Sansotera, R. M. Vazquez, R. Osellame, G. Cerullo, and W. Navarrini, “Micromanufacturing in fused silica via femtosecond laser irradiation followed by gas-phase chemical etching,” Micromachines 3(4), 604–614 (2012).
[Crossref]

S. Ho, M. Haque, P. R. Herman, and J. S. Aitchison, “Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica,” Opt. Lett. 37(10), 1682–1684 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2009 (2)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

2008 (6)

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[Crossref] [PubMed]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1-2), 26–46 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

S. Juodkazis, Y. Nishi, and H. Misawa, ““Femtosecond laser-assisted formation of channels in sapphire using KOH solution,” Phys,” Status Solidi-R 2(6), 275–277 (2008).
[Crossref]

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express 16(24), 19520–19534 (2008).
[Crossref] [PubMed]

P. M. Dove, N. Han, A. F. Wallace, and J. J. De Yoreo, “Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs,” Proc. Natl. Acad. Sci. U.S.A. 105(29), 9903–9908 (2008).
[Crossref] [PubMed]

2006 (1)

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

2005 (2)

2004 (2)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref] [PubMed]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1549–1553 (2004).
[Crossref]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2001 (1)

1998 (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

1997 (1)

1993 (1)

J. Gratz and P. Bird, “Quartz dissolution : theory of rough and smooth surfaces,” Geochim. Cosmochim. Acta 57(5), 977–989 (1993).
[Crossref]

1990 (1)

H. Seidel, L. Csepregi, A. Heuberger, and H. Boumgortel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[Crossref]

Aitchison, J. S.

Bado, P.

Barthel, E.

Bellouard, Y.

Beresna, M.

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Bird, P.

J. Gratz and P. Bird, “Quartz dissolution : theory of rough and smooth surfaces,” Geochim. Cosmochim. Acta 57(5), 977–989 (1993).
[Crossref]

Boumgortel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Boumgortel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[Crossref]

Brisset, F.

Canning, J.

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Cerullo, G.

F. Venturini, M. Sansotera, R. M. Vazquez, R. Osellame, G. Cerullo, and W. Navarrini, “Micromanufacturing in fused silica via femtosecond laser irradiation followed by gas-phase chemical etching,” Micromachines 3(4), 604–614 (2012).
[Crossref]

Champion, A.

Cook, K.

Corbari, C.

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Csepregi, L.

H. Seidel, L. Csepregi, A. Heuberger, and H. Boumgortel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[Crossref]

De Yoreo, J. J.

P. M. Dove, N. Han, A. F. Wallace, and J. J. De Yoreo, “Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs,” Proc. Natl. Acad. Sci. U.S.A. 105(29), 9903–9908 (2008).
[Crossref] [PubMed]

Dove, P. M.

P. M. Dove, N. Han, A. F. Wallace, and J. J. De Yoreo, “Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs,” Proc. Natl. Acad. Sci. U.S.A. 105(29), 9903–9908 (2008).
[Crossref] [PubMed]

Dugan, M.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gecevicius, M.

Gratz, J.

J. Gratz and P. Bird, “Quartz dissolution : theory of rough and smooth surfaces,” Geochim. Cosmochim. Acta 57(5), 977–989 (1993).
[Crossref]

Han, N.

P. M. Dove, N. Han, A. F. Wallace, and J. J. De Yoreo, “Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs,” Proc. Natl. Acad. Sci. U.S.A. 105(29), 9903–9908 (2008).
[Crossref] [PubMed]

Hanada, Y.

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[Crossref] [PubMed]

Haque, M.

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Herman, P. R.

Herrero, P.

Heuberger, A.

H. Seidel, L. Csepregi, A. Heuberger, and H. Boumgortel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1-2), 26–46 (2008).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Ho, S.

Ishikawa, I. S.

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[Crossref] [PubMed]

Iwata, K.

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

S. Juodkazis, Y. Nishi, and H. Misawa, ““Femtosecond laser-assisted formation of channels in sapphire using KOH solution,” Phys,” Status Solidi-R 2(6), 275–277 (2008).
[Crossref]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1549–1553 (2004).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

Kawano, H.

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[Crossref] [PubMed]

Kazansky, P.

Kazansky, P. G.

Kikuta, H.

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Lancry, M.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1(5), 998 (2011).
[Crossref]

LoTurco, S.

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

Marcinkevicius, A.

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1549–1553 (2004).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Midorikawa, K.

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[Crossref] [PubMed]

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

S. Juodkazis, Y. Nishi, and H. Misawa, ““Femtosecond laser-assisted formation of channels in sapphire using KOH solution,” Phys,” Status Solidi-R 2(6), 275–277 (2008).
[Crossref]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1549–1553 (2004).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

Miwa, M.

Miyawaki, A.

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[Crossref] [PubMed]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1549–1553 (2004).
[Crossref]

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Navarrini, W.

F. Venturini, M. Sansotera, R. M. Vazquez, R. Osellame, G. Cerullo, and W. Navarrini, “Micromanufacturing in fused silica via femtosecond laser irradiation followed by gas-phase chemical etching,” Micromachines 3(4), 604–614 (2012).
[Crossref]

Nishi, Y.

S. Juodkazis, Y. Nishi, and H. Misawa, ““Femtosecond laser-assisted formation of channels in sapphire using KOH solution,” Phys,” Status Solidi-R 2(6), 275–277 (2008).
[Crossref]

Nishii, J.

Ohira, Y.

Oliveira, V.

Osellame, R.

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

F. Venturini, M. Sansotera, R. M. Vazquez, R. Osellame, G. Cerullo, and W. Navarrini, “Micromanufacturing in fused silica via femtosecond laser irradiation followed by gas-phase chemical etching,” Micromachines 3(4), 604–614 (2012).
[Crossref]

Poumellec, B.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1(5), 998 (2011).
[Crossref]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

Rajesh, S.

Ramponi, R.

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Said, A.

Said, A. A.

Sansotera, M.

F. Venturini, M. Sansotera, R. M. Vazquez, R. Osellame, G. Cerullo, and W. Navarrini, “Micromanufacturing in fused silica via femtosecond laser irradiation followed by gas-phase chemical etching,” Micromachines 3(4), 604–614 (2012).
[Crossref]

Seidel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Boumgortel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[Crossref]

Sharma, S. P.

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1-2), 26–46 (2008).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

Sugioka, K.

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[Crossref] [PubMed]

Takebe, H.

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1-2), 26–46 (2008).
[Crossref]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Vazquez, R. M.

F. Venturini, M. Sansotera, R. M. Vazquez, R. Osellame, G. Cerullo, and W. Navarrini, “Micromanufacturing in fused silica via femtosecond laser irradiation followed by gas-phase chemical etching,” Micromachines 3(4), 604–614 (2012).
[Crossref]

Venturini, F.

F. Venturini, M. Sansotera, R. M. Vazquez, R. Osellame, G. Cerullo, and W. Navarrini, “Micromanufacturing in fused silica via femtosecond laser irradiation followed by gas-phase chemical etching,” Micromachines 3(4), 604–614 (2012).
[Crossref]

Vilar, R.

Vishnubhatla, K. C.

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

Wallace, A. F.

P. M. Dove, N. Han, A. F. Wallace, and J. J. De Yoreo, “Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs,” Proc. Natl. Acad. Sci. U.S.A. 105(29), 9903–9908 (2008).
[Crossref] [PubMed]

Watanabe, M.

Weickman, A.

Yamasaki, K.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1549–1553 (2004).
[Crossref]

Yang, W.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, and P. G. Kazansky, “Extraordinary anisotropy of ultrafast laser writing in glass,” Opt. Express 21(4), 3959–3968 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1549–1553 (2004).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

Biomed. Microdevices (1)

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[Crossref] [PubMed]

Geochim. Cosmochim. Acta (1)

J. Gratz and P. Bird, “Quartz dissolution : theory of rough and smooth surfaces,” Geochim. Cosmochim. Acta 57(5), 977–989 (1993).
[Crossref]

J. Appl. Phys. (1)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

J. Electrochem. Soc. (1)

H. Seidel, L. Csepregi, A. Heuberger, and H. Boumgortel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[Crossref]

J. Micromech. Microeng. (1)

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

J. Phys. Chem. C (1)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Laser Photon. Rev. (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1-2), 26–46 (2008).
[Crossref]

Micromachines (1)

F. Venturini, M. Sansotera, R. M. Vazquez, R. Osellame, G. Cerullo, and W. Navarrini, “Micromanufacturing in fused silica via femtosecond laser irradiation followed by gas-phase chemical etching,” Micromachines 3(4), 604–614 (2012).
[Crossref]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (7)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref] [PubMed]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref] [PubMed]

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express 16(24), 19520–19534 (2008).
[Crossref] [PubMed]

S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express 18(20), 21490–21497 (2010).
[Crossref] [PubMed]

M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, and P. G. Kazansky, “Extraordinary anisotropy of ultrafast laser writing in glass,” Opt. Express 21(4), 3959–3968 (2013).
[Crossref] [PubMed]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
[Crossref] [PubMed]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (2)

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

P. M. Dove, N. Han, A. F. Wallace, and J. J. De Yoreo, “Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs,” Proc. Natl. Acad. Sci. U.S.A. 105(29), 9903–9908 (2008).
[Crossref] [PubMed]

Status Solidi-R (1)

S. Juodkazis, Y. Nishi, and H. Misawa, ““Femtosecond laser-assisted formation of channels in sapphire using KOH solution,” Phys,” Status Solidi-R 2(6), 275–277 (2008).
[Crossref]

Other (4)

M. Hörstmann-Jungemann, J. Gottmann, and D. Wortmann, “Nano- and microstructuring of SiO2 and sapphire with fs-laser induced selective etching,” J. Laser Micro/Nanoeng. 4, 135–140 (2009).
[Crossref]

D. J. Stokes, Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM) (John Wiley & Sons, Ltd, 2008).

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro/Nanoeng. 9, 126–131 (2014).
[Crossref]

J. Kerr, Handbook of chemistry and physics, 81st ed. (CRC, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SEM images of the cross sectioned single line nanograting, etched for 24 h: (a) non-annealed, imaged with VPSE mode; (b) non-annealed, imaged with SE mode; (c) annealed at 900°C for 1h, imaged with VPSE mode; (d) annealed at 900°C for 1h, imaged with SE mode. For SE mode samples were coated with a 10 nm-gold film. The insets show magnified defect-rich nanoplanes in laser modified silica. Scale bars are 2 µm for full images and 125 nm for insets.
Fig. 2
Fig. 2 (a) The sketch of laser-assisted fabrication of surface nanograting: (i) femtosecond laser writing inside a bulk glass, (ii) lapping and (iii) polishing. (b) Schematic diagram of the lapping, from the cross-sectioned single line nanograting point of view, showing the structure sectioning in z-axis direction.
Fig. 3
Fig. 3 The nanograting lapped/polished at different depths from Z = + 1.0 μm to Z = –21.5 μm, written with 300 fs, 0° polarization and 0.45 µJ pulse energy (see Fig. 2). The peak part of the nanograting is at the depth of Z = 0 μm. (a), (b) Retardance (in air, for λ = 546 nm) images before and after total 25 h etching, respectively, with the columns (c) indicating its values at different cut-off. Color scale: 0–400 nm. (d) VPSE SEM images of the sectioned and etched nanograting, where the cut-off values correspond to (a)–(c). Scale bar: 500 nm.
Fig. 4
Fig. 4 (a)–(d) Retardance (in air, for λ = 546 nm) dependence on the etching time. Nanograting was written with 700 fs and 300 fs pulse duration, 0° and 90° polarization, energies ranging from 0.25 µJ to 0.55 µJ; lapped and polished at the top part of the structure. The linear fitting was performed. (e) Imaged retardance (in air, for λ = 546 nm) dependence on the etching time. Structure was written with 300 fs, 0° polarization and 0.45 µJ pulse energy. Color scale: 0–400 nm.
Fig. 5
Fig. 5 (a) The etching induced retardance growth rate dependence on the laser modification conditions. The steady-state growth rates were extracted from the fitting curves, see Fig. 4. (b) VPSE SEM images of the surface nanograting written with 300 fs at various conditions and etched for 25 h. Inset shows the higher resolution zoomed in etched silica regions/nanoplanes. Scale bars: 1 µm and 300 nm (for inset).
Fig. 6
Fig. 6 Retardance (in air) dispersion of 25 h etched nanograting (a) written with 700 fs, energies from 0.25 µJ to 0.55 µJ and two polarizations states. (b) Retardance dispersion of nanograting filled with different refractive index medium: bulk – before etching (defect-rich silica); air – etched for 25 h and dried; water – etched for 25 h and immersed in water. The nanograting was written with 700 fs, 45 µJ pulse energy and 0° polarization. Blue arrow indicates the increase of medium’s refractive index.
Fig. 7
Fig. 7 The sketch of the light wave β (red arrow) propagating along the femtosecond laser induced nanograting in the silica glass. The optical axis of the fabricated birefringent element is perpendicular and the slow axis is parallel to the grating nanoplanes with thickness b and refractive index n2; a and n1 corresponds to the unmodified silica glass. The depth (d) of the nanograting is divided into unetched (d1) and etched (d2) parts.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Si+6O H +2 H 2 O Si ( OH ) 4 +2O H +2 H 2 O+4 e Si O 2 ( OH ) 2 2 +4O H +2 H 2 ,
Si O 2 +2O H Si O 2 ( OH ) 2 2 ,
R( λ )=acos( I parallel I crossed I parallel + I crossed ) λ 2π =Δ( λ ) λ 2π .
k 1TE,1TM = ( 2π n 1 λ ) 2 β TE,TM 2 ,
k 2TE,2TM = ( 2π n 2 λ ) 2 β TE,TM 2 ,
1=cos( a k 1TE )cos( b k 2TE )0.5( k 2TE k 1TE + k 1TE k 2TE )sin( a k 1TE )sin( b k 2TE ),
1=cos( a k 1TM )cos( b k 2TM )0.5( n 1 2 k 2TM n 2 2 k 1TM + n 2 2 k 1TM n 1 2 k 2TM )sin( a k 1TM )sin( b k 2TM ),
n TE,TM = λ 2π β TE,TM ,
R=d( n TE n TM ).

Metrics