Abstract

Tunable and mode-locked laser operation near 2 µm based on different Tm-doped YAG ceramics, 4 at.% and 10 at.%, is demonstrated. Several designs of GaSb-based surface-quantum-well SESAMs are characterized and studied as saturable absorbers for mode-locking. Best mode-locking performance was achieved using an antireflection-coated near-surface quantum-well SESAM, resulting in a pulse duration of ~3 ps and ~150 mW average output power at 89 MHz. All mode-locked Tm:YAG ceramic lasers operated at 2012 nm, with over 133 nm demonstrated tuning for continuous-wave operation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs

Kejian Yang, Dirk Heinecke, Jonna Paajaste, Christoph Kölbl, Thomas Dekorsy, Soile Suomalainen, and Mircea Guina
Opt. Express 21(4) 4311-4318 (2013)

Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm

Yicheng Wang, Ruijun Lan, Xavier Mateos, Jiang Li, Chen Hu, Chaoyu Li, Soile Suomalainen, Antti Härkönen, Mircea Guina, Valentin Petrov, and Uwe Griebner
Opt. Express 24(16) 18003-18012 (2016)

Thulium doped LuAG ceramics for passively mode locked lasers

Yicheng Wang, Ruijun Lan, Xavier Mateos, Jiang Li, Chaoyu Li, Soile Suomalainen, Antti Härkönen, Mircea Guina, Valentin Petrov, and Uwe Griebner
Opt. Express 25(6) 7084-7091 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Ebrahim-Zadeh and I. T. Sorokina, eds., Mid-infrared Coherent Sources and Applications (Springer, 2008).
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  3. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm,” Appl. Opt. 35(36), 7117–7127 (1996).
    [Crossref] [PubMed]
  4. F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, 2004).
  5. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
    [Crossref]
  6. N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
    [Crossref]
  7. A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express 19(10), 9995–10000 (2011).
    [Crossref] [PubMed]
  8. A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
    [Crossref] [PubMed]
  9. A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, “Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm,” Opt. Lett. 35(18), 3027–3029 (2010).
    [PubMed]
  10. K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
    [Crossref] [PubMed]
  11. K. J. Yang, D. C. Heinecke, C. Kölbl, T. Dekorsy, S. Z. Zhao, L. H. Zheng, J. Xu, and G. J. Zhao, “Mode-locked Tm,Ho:YAP laser around 2.1 μm,” Opt. Express 21(2), 1574–1580 (2013).
    [Crossref] [PubMed]
  12. N. Coluccelli, A. A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
    [Crossref] [PubMed]
  13. A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
    [Crossref]
  14. M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012, 1–19 (2012).
    [Crossref]
  15. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  16. A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-II. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes,” Opt. Express 20, 5313–5318 (2012).
  17. J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
    [Crossref]
  18. A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
    [Crossref]
  19. J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Scientific Reports. 4, 5016, 1–6 (2014).
    [Crossref]
  20. A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
    [Crossref]
  21. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers,” Opt. Lett. 15(9), 486–488 (1990).
    [Crossref] [PubMed]
  22. T. Yokozawa and H. Hara, “Laser-diode end-pumped Tm(3+):YAG eye-safe laser,” Appl. Opt. 35(9), 1424–1426 (1996).
    [Crossref] [PubMed]
  23. C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
    [Crossref] [PubMed]
  24. Y. F. Li, Y. Z. Wang, and Y. L. Ju, “Comparative study of LD-Pumped Tm:YAG and Tm:LuAG lasers,” Laser Phys. 18(6), 722–724 (2008).
    [Crossref]
  25. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Continuous-wave mode-locked 2- microm Tm: YAG laser,” Opt. Lett. 17(10), 731–732 (1992).
    [Crossref] [PubMed]
  26. A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
    [Crossref]
  27. W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
    [Crossref]
  28. W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, Y.-W. Zou, and Z.-Y. Wei, “Preparation and characterization of transparent Tm:YAG ceramics,” Ceram. Int. 37(3), 1133–1137 (2011).
    [Crossref]
  29. Q.-L. Ma, Y. Bo, N. Zong, Y.-B. Pan, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
    [Crossref]
  30. S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
    [Crossref]
  31. Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
    [Crossref]
  32. J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
    [Crossref]
  33. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
    [Crossref] [PubMed]
  34. U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser that uses intracavity saturable absorbers,” Opt. Lett. 18(13), 1077 (1993).
    [Crossref] [PubMed]
  35. Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
    [Crossref]
  36. A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
    [Crossref]
  37. F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
    [Crossref]
  38. H. K. Choi, G. W. Turner, and S. J. Eglash, “High-power GaInAsSb-AlGaAsSb diode lasers emitting at 1.9 μm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
    [Crossref]
  39. C. Lin, M. Grau, O. Dier, and M. C. Amann, “Low-threshold room-temperature cw operation of 2.24–3.04 µm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84(25), 5088–5090 (2004).
    [Crossref]
  40. J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Stat. Solid. C. 9(2), 294–297 (2012).
    [Crossref]
  41. J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D 46, 065102 (2014).
  42. J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).
  43. P. Song, Z. Zhao, X. Xu, B. Jang, P. Deng, and J. Xu, “Growth and properties of Tm: YAG crystals,” J. Cryst. Growth 270(3-4), 433–437 (2004).
    [Crossref]
  44. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  45. R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 801–810 (2002).
    [Crossref]
  46. A. Jasik, J. Muszalski, K. Hejduk, and M. Kosmala, “The reduced temporal parameters of passivated semiconductor saturable absorber mirror,” Thin Solid Films 518(1), 171–173 (2009).
    [Crossref]

2013 (6)

K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
[Crossref] [PubMed]

K. J. Yang, D. C. Heinecke, C. Kölbl, T. Dekorsy, S. Z. Zhao, L. H. Zheng, J. Xu, and G. J. Zhao, “Mode-locked Tm,Ho:YAP laser around 2.1 μm,” Opt. Express 21(2), 1574–1580 (2013).
[Crossref] [PubMed]

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

2012 (7)

A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Stat. Solid. C. 9(2), 294–297 (2012).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-II. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes,” Opt. Express 20, 5313–5318 (2012).

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012, 1–19 (2012).
[Crossref]

2011 (5)

A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express 19(10), 9995–10000 (2011).
[Crossref] [PubMed]

N. Coluccelli, A. A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
[Crossref]

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, Y.-W. Zou, and Z.-Y. Wei, “Preparation and characterization of transparent Tm:YAG ceramics,” Ceram. Int. 37(3), 1133–1137 (2011).
[Crossref]

Q.-L. Ma, Y. Bo, N. Zong, Y.-B. Pan, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

2010 (3)

2009 (2)

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

A. Jasik, J. Muszalski, K. Hejduk, and M. Kosmala, “The reduced temporal parameters of passivated semiconductor saturable absorber mirror,” Thin Solid Films 518(1), 171–173 (2009).
[Crossref]

2008 (3)

Y. F. Li, Y. Z. Wang, and Y. L. Ju, “Comparative study of LD-Pumped Tm:YAG and Tm:LuAG lasers,” Laser Phys. 18(6), 722–724 (2008).
[Crossref]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2006 (1)

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[Crossref]

2004 (2)

C. Lin, M. Grau, O. Dier, and M. C. Amann, “Low-threshold room-temperature cw operation of 2.24–3.04 µm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84(25), 5088–5090 (2004).
[Crossref]

P. Song, Z. Zhao, X. Xu, B. Jang, P. Deng, and J. Xu, “Growth and properties of Tm: YAG crystals,” J. Cryst. Growth 270(3-4), 433–437 (2004).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2002 (1)

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 801–810 (2002).
[Crossref]

1999 (1)

1996 (2)

1995 (1)

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

1994 (1)

H. K. Choi, G. W. Turner, and S. J. Eglash, “High-power GaInAsSb-AlGaAsSb diode lasers emitting at 1.9 μm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
[Crossref]

1993 (1)

1992 (2)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Continuous-wave mode-locked 2- microm Tm: YAG laser,” Opt. Lett. 17(10), 731–732 (1992).
[Crossref] [PubMed]

1990 (1)

1985 (1)

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Adams, A. R.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 801–810 (2002).
[Crossref]

Ahn, J. H.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Alanko, J.-P.

A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
[Crossref]

Amann, M. C.

C. Lin, M. Grau, O. Dier, and M. C. Amann, “Low-threshold room-temperature cw operation of 2.24–3.04 µm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84(25), 5088–5090 (2004).
[Crossref]

Ames, L. L.

Andreev, A.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 801–810 (2002).
[Crossref]

Antipov, O. L.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
[Crossref] [PubMed]

Bo, Y.

Q.-L. Ma, Y. Bo, N. Zong, Y.-B. Pan, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Brockman, P.

Brown, C. T. A.

Calloway, R. S.

Calvez, S.

Cao, Y.

Cascales, C.

Cavalli, E.

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Chen, H.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

Cheng, X.-J.

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Chiu, T. H.

Choi, H. K.

H. K. Choi, G. W. Turner, and S. J. Eglash, “High-power GaInAsSb-AlGaAsSb diode lasers emitting at 1.9 μm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
[Crossref]

Choi, S. Y.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-II. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes,” Opt. Express 20, 5313–5318 (2012).

Coluccelli, N.

N. Coluccelli, A. A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Cui, D.-F.

Q.-L. Ma, Y. Bo, N. Zong, Y.-B. Pan, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Dawson, M. D.

Dekorsy, T.

Deng, P.

P. Song, Z. Zhao, X. Xu, B. Jang, P. Deng, and J. Xu, “Growth and properties of Tm: YAG crystals,” J. Cryst. Growth 270(3-4), 433–437 (2004).
[Crossref]

Di Lieto, A.

N. Coluccelli, A. A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Díaz, F.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Dier, O.

C. Lin, M. Grau, O. Dier, and M. C. Amann, “Low-threshold room-temperature cw operation of 2.24–3.04 µm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84(25), 5088–5090 (2004).
[Crossref]

Eglash, S. J.

H. K. Choi, G. W. Turner, and S. J. Eglash, “High-power GaInAsSb-AlGaAsSb diode lasers emitting at 1.9 μm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
[Crossref]

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

Esterowitz, L.

Fan, X.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Fehse, R.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 801–810 (2002).
[Crossref]

Ferguson, J. F.

Ferrari, A. C.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Forney, P.

Fuhrberg, P.

Fusari, F.

Galzerano, G.

N. Coluccelli, A. A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Garnache, A.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gatti, D.

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Gossard, A. C.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Grau, M.

C. Lin, M. Grau, O. Dier, and M. C. Amann, “Low-threshold room-temperature cw operation of 2.24–3.04 µm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84(25), 5088–5090 (2004).
[Crossref]

Grebing, C.

A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
[Crossref]

Griebner, U.

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-II. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes,” Opt. Express 20, 5313–5318 (2012).

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[Crossref]

Guina, M.

K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Stat. Solid. C. 9(2), 294–297 (2012).
[Crossref]

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012, 1–19 (2012).
[Crossref]

A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
[Crossref]

Guo, J.

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

Guo, J. K.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

Gupta, J. A.

Han, X.

Hara, H.

Härkönen, A.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Stat. Solid. C. 9(2), 294–297 (2012).
[Crossref]

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012, 1–19 (2012).
[Crossref]

A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
[Crossref]

Hawley, J. G.

He, S.

Heinecke, D.

Heinecke, D. C.

Hejduk, K.

A. Jasik, J. Muszalski, K. Hejduk, and M. Kosmala, “The reduced temporal parameters of passivated semiconductor saturable absorber mirror,” Thin Solid Films 518(1), 171–173 (2009).
[Crossref]

Huber, G.

Huo, Y.

Ikesue, A.

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

Jang, B.

P. Song, Z. Zhao, X. Xu, B. Jang, P. Deng, and J. Xu, “Growth and properties of Tm: YAG crystals,” J. Cryst. Growth 270(3-4), 433–437 (2004).
[Crossref]

Jasik, A.

A. Jasik, J. Muszalski, K. Hejduk, and M. Kosmala, “The reduced temporal parameters of passivated semiconductor saturable absorber mirror,” Thin Solid Films 518(1), 171–173 (2009).
[Crossref]

Jiang, B.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Jiang, B.-X.

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Ju, Y. L.

Y. F. Li, Y. Z. Wang, and Y. L. Ju, “Comparative study of LD-Pumped Tm:YAG and Tm:LuAG lasers,” Laser Phys. 18(6), 722–724 (2008).
[Crossref]

Kamata, K.

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

Keller, U.

Kim, N. S.

Kisel, V. E.

Klein, S. H.

Kölbl, C.

Kong, W.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Koopmann, P.

Korpijärvi, V.-M.

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012, 1–19 (2012).
[Crossref]

Koskinen, R.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Stat. Solid. C. 9(2), 294–297 (2012).
[Crossref]

A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
[Crossref]

Kosmala, M.

A. Jasik, J. Muszalski, K. Hejduk, and M. Kosmala, “The reduced temporal parameters of passivated semiconductor saturable absorber mirror,” Thin Solid Films 518(1), 171–173 (2009).
[Crossref]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kuleshov, N. V.

Kulmala, T. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Kurilchik, S. V.

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Lagatsky, A. A.

Laporta, P.

N. Coluccelli, A. A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Lee, Y.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Leinonen, T.

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012, 1–19 (2012).
[Crossref]

Li, C.

Li, D.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Li, J.

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, Y.-W. Zou, and Z.-Y. Wei, “Preparation and characterization of transparent Tm:YAG ceramics,” Ceram. Int. 37(3), 1133–1137 (2011).
[Crossref]

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Li, Y. F.

Y. F. Li, Y. Z. Wang, and Y. L. Ju, “Comparative study of LD-Pumped Tm:YAG and Tm:LuAG lasers,” Laser Phys. 18(6), 722–724 (2008).
[Crossref]

Lin, C.

C. Lin, M. Grau, O. Dier, and M. C. Amann, “Low-threshold room-temperature cw operation of 2.24–3.04 µm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84(25), 5088–5090 (2004).
[Crossref]

Liu, J.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Liu, W. B.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

Liu, W.-B.

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, Y.-W. Zou, and Z.-Y. Wei, “Preparation and characterization of transparent Tm:YAG ceramics,” Ceram. Int. 37(3), 1133–1137 (2011).
[Crossref]

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Ma, Q.-L.

Q.-L. Ma, Y. Bo, N. Zong, Y.-B. Pan, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Mateos, X.

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Milana, S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Miller, D. A. B.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Muszalski, J.

A. Jasik, J. Muszalski, K. Hejduk, and M. Kosmala, “The reduced temporal parameters of passivated semiconductor saturable absorber mirror,” Thin Solid Films 518(1), 171–173 (2009).
[Crossref]

O’Reilly, E. P.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 801–810 (2002).
[Crossref]

Otto, R. G.

Paajaste, J.

K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Stat. Solid. C. 9(2), 294–297 (2012).
[Crossref]

A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
[Crossref]

Pan, Y.

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Pan, Y. B.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

Pan, Y.-B.

Q.-L. Ma, Y. Bo, N. Zong, Y.-B. Pan, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, Y.-W. Zou, and Z.-Y. Wei, “Preparation and characterization of transparent Tm:YAG ceramics,” Ceram. Int. 37(3), 1133–1137 (2011).
[Crossref]

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Peng, Q.-J.

Q.-L. Ma, Y. Bo, N. Zong, Y.-B. Pan, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Petrov, V.

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-II. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes,” Opt. Express 20, 5313–5318 (2012).

Pinto, J. F.

Qu, Z.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Riechert, H.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 801–810 (2002).
[Crossref]

Robinson, P. A.

Rosenblatt, G. H.

Rotermund, F.

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-II. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes,” Opt. Express 20, 5313–5318 (2012).

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Saas, F.

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[Crossref]

Sagnes, I.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Saint-Giro, G.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Schmidt, A.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-II. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes,” Opt. Express 20, 5313–5318 (2012).

Segura, M.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Sermage, B.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Serrano, M. D.

Shen, D.

Shen, D. Y.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

Sibbett, W.

Silberberg, Y.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Smith, P. W.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Song, J.

Song, P.

P. Song, Z. Zhao, X. Xu, B. Jang, P. Deng, and J. Xu, “Growth and properties of Tm: YAG crystals,” J. Cryst. Growth 270(3-4), 433–437 (2004).
[Crossref]

Steakley, B. C.

Steinmeyer, G.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Stat. Solid. C. 9(2), 294–297 (2012).
[Crossref]

A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
[Crossref]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[Crossref]

Stone, R.

Stoneman, R. C.

Sun, Z.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Sundaram, R. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Suomalainen, S.

K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
[Crossref] [PubMed]

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012, 1–19 (2012).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Stat. Solid. C. 9(2), 294–297 (2012).
[Crossref]

A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
[Crossref]

Swanson, D.

Sweeney, S. J.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 801–810 (2002).
[Crossref]

Tang, D.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Targ, R.

Teissier, R.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Tell, B.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Thomas, J. T.

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

Tomic, S.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 801–810 (2002).
[Crossref]

Tonelli, M.

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

N. Coluccelli, A. A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Torrisi, F.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Turner, G. W.

H. K. Choi, G. W. Turner, and S. J. Eglash, “High-power GaInAsSb-AlGaAsSb diode lasers emitting at 1.9 μm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
[Crossref]

Ueda, K.

Veronesi, S.

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

Wang, Q.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Wang, X.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Wang, Y.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Wang, Y. Z.

Y. F. Li, Y. Z. Wang, and Y. L. Ju, “Comparative study of LD-Pumped Tm:YAG and Tm:LuAG lasers,” Laser Phys. 18(6), 722–724 (2008).
[Crossref]

Wei, Z.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Wei, Z.-Y.

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, Y.-W. Zou, and Z.-Y. Wei, “Preparation and characterization of transparent Tm:YAG ceramics,” Ceram. Int. 37(3), 1133–1137 (2011).
[Crossref]

Weyers, M.

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[Crossref]

Wiegmann, W.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Xu, J.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

K. J. Yang, D. C. Heinecke, C. Kölbl, T. Dekorsy, S. Z. Zhao, L. H. Zheng, J. Xu, and G. J. Zhao, “Mode-locked Tm,Ho:YAP laser around 2.1 μm,” Opt. Express 21(2), 1574–1580 (2013).
[Crossref] [PubMed]

P. Song, Z. Zhao, X. Xu, B. Jang, P. Deng, and J. Xu, “Growth and properties of Tm: YAG crystals,” J. Cryst. Growth 270(3-4), 433–437 (2004).
[Crossref]

Xu, J.-Q.

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Xu, X.

P. Song, Z. Zhao, X. Xu, B. Jang, P. Deng, and J. Xu, “Growth and properties of Tm: YAG crystals,” J. Cryst. Growth 270(3-4), 433–437 (2004).
[Crossref]

Xu, Z.-Y.

Q.-L. Ma, Y. Bo, N. Zong, Y.-B. Pan, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Yang, K.

Yang, K. J.

Yang, Q.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Yang, X. F.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

Yeom, D.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Yeom, D.-II.

Yokozawa, T.

Yoshida, K.

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

Zaldo, C.

Zarifis, V.

Zhan, M.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Zhang, J.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Zhang, S.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Zhang, W. X.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

Zhang, W.-X.

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, Y.-W. Zou, and Z.-Y. Wei, “Preparation and characterization of transparent Tm:YAG ceramics,” Ceram. Int. 37(3), 1133–1137 (2011).
[Crossref]

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Zhang, Z.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Zhao, G. J.

Zhao, S. Z.

Zhao, T.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

Zhao, Z.

P. Song, Z. Zhao, X. Xu, B. Jang, P. Deng, and J. Xu, “Growth and properties of Tm: YAG crystals,” J. Cryst. Growth 270(3-4), 433–437 (2004).
[Crossref]

Zheng, L. H.

Zhou, J.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, Y.-W. Zou, and Z.-Y. Wei, “Preparation and characterization of transparent Tm:YAG ceramics,” Ceram. Int. 37(3), 1133–1137 (2011).
[Crossref]

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Zong, N.

Q.-L. Ma, Y. Bo, N. Zong, Y.-B. Pan, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Zorn, M.

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[Crossref]

Zou, Y.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Zou, Y.-W.

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, Y.-W. Zou, and Z.-Y. Wei, “Preparation and characterization of transparent Tm:YAG ceramics,” Ceram. Int. 37(3), 1133–1137 (2011).
[Crossref]

Adv. Opt. Technol. (1)

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012, 1–19 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (2)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Appl. Phys. Express (1)

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Appl. Phys. Lett. (4)

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[Crossref]

C. Lin, M. Grau, O. Dier, and M. C. Amann, “Low-threshold room-temperature cw operation of 2.24–3.04 µm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84(25), 5088–5090 (2004).
[Crossref]

Ceram. Int. (1)

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, Y.-W. Zou, and Z.-Y. Wei, “Preparation and characterization of transparent Tm:YAG ceramics,” Ceram. Int. 37(3), 1133–1137 (2011).
[Crossref]

Electron. Lett. (1)

A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett. 47(7), 454 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 801–810 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. K. Choi, G. W. Turner, and S. J. Eglash, “High-power GaInAsSb-AlGaAsSb diode lasers emitting at 1.9 μm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
[Crossref]

J. Am. Ceram. Soc. (3)

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95, 1029–1032 (2012).

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

W.-X. Zhang, Y.-B. Pan, J. Zhou, W.-B. Liu, J. Li, B.-X. Jiang, X.-J. Cheng, and J.-Q. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

J. Cryst. Growth (1)

P. Song, Z. Zhao, X. Xu, B. Jang, P. Deng, and J. Xu, “Growth and properties of Tm: YAG crystals,” J. Cryst. Growth 270(3-4), 433–437 (2004).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. T. Thomas, M. Tonelli, S. Veronesi, E. Cavalli, X. Mateos, V. Petrov, U. Griebner, J. Li, Y. Pan, and J. Guo, “Optical spectroscopy of Tm 3+:YAG transparent ceramics,” J. Phys. D Appl. Phys. 46(37), 375301 (2013).
[Crossref]

Laser Phys. (1)

Y. F. Li, Y. Z. Wang, and Y. L. Ju, “Comparative study of LD-Pumped Tm:YAG and Tm:LuAG lasers,” Laser Phys. 18(6), 722–724 (2008).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Commun. (2)

Q.-L. Ma, Y. Bo, N. Zong, Y.-B. Pan, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Opt. Lett. (6)

Opt. Mater. (1)

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Phys. Stat. Solid. C. (1)

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Stat. Solid. C. 9(2), 294–297 (2012).
[Crossref]

Thin Solid Films (1)

A. Jasik, J. Muszalski, K. Hejduk, and M. Kosmala, “The reduced temporal parameters of passivated semiconductor saturable absorber mirror,” Thin Solid Films 518(1), 171–173 (2009).
[Crossref]

Other (5)

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D 46, 065102 (2014).

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Scientific Reports. 4, 5016, 1–6 (2014).
[Crossref]

F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, 2004).

M. Ebrahim-Zadeh and I. T. Sorokina, eds., Mid-infrared Coherent Sources and Applications (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Gain of the 4 at.% Tm:YAG ceramic for different inversion levels β (σgain = βσem - (1 - β)σabs). (b) Pump-probe traces (colored) and bi-exponential fits to the data (black) of the four studied AR-coated QW SESAMs recorded at 2.0 µm (ΔR/R – reflectivity change). The inset shows the measured reflectivity of SESAM #1 (error margin of the microfocus measurement: 2%). For SESAM-designs, see Table 1.
Fig. 2
Fig. 2 Setup of the Tm:YAG ceramic laser. L1: focusing lens; M1, M2 and M3: concave mirrors with radius of curvature (RoC) = 100 mm; M4 curved pump mirror, RoC = 100 mm; M5 plane HR-mirror; P1, P2: CaF2 prisms; OC: output coupler. Insets: exchanging parts for tunable CW operation (Birefringent (Lyot)-Filter) or dispersion compensation line (prisms).
Fig. 3
Fig. 3 CW laser performance of the 4 and 10 at.% Tm:YAG ceramic lasers: (a) output power vs. absorbed pump power and linear fits for the slope efficiencies. (b) Spectral tunability for an incident pump power of 2.5 W.
Fig. 4
Fig. 4 Mode-locked 4 at.% Tm:YAG ceramic laser: (a) input–output characteristics (red line: slope efficiency (η) in the mode-locked regime (linear fit). (b) Measured interferometric autocorrelation signal. The measurement was based on the two-photon absorption nonlinearity in a silicon photo diode.
Fig. 5
Fig. 5 Intensity autocorrelation traces extracted from the interferometric autocorrelation signals of the mode-locked Tm:YAG ceramic lasers (τΔν: time-bandwidth product). Insets: optical emission spectra: (a) 4 at.% Tm:YAG ceramic; (b) 10 at.% Tm:YAG ceramic.
Fig. 6
Fig. 6 Radio frequency-spectra of the SESAM mode-locked 4 at.% Tm:YAG ceramic laser: fundamental beat note (a) and 1 GHz wide-span (b). RBW: resolution bandwidth.

Tables (1)

Tables Icon

Table 1 Parameters of the studied SESAMs and results with the mode-locked 4 and 10 at.%-doped Tm:YAG ceramic lasers (Toc = 3%).

Metrics