Abstract

We proposed and demonstrated pulsed fiber lasers Q-switched and mode-locked by using a large-angle tilted fiber grating, for the first time to our best knowledge. Owing to the unique polarization properties of the large-angle tilted fiber grating (LA-TFG), i.e. polarization-dependent loss and polarization-mode splitting, switchable dual-wavelength Q-switched and mode-locked pulses have been achieved with short and long cavities, respectively. For the mode-locking case, the laser was under the operation of nanosecond rectangular pulses, due to the peak-power clamping effect. With the increasing pump power, the durations of both single- and dual-wavelength rectangular pulses increase. It was also found that each filtered wavelength of the dual-wavelength rectangular pulse corresponds to an individual nanosecond rectangular pulse by employing a tunable bandpass filter.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stable nanosecond passively Q-switched all-fiber erbium-doped laser with a 45° tilted fiber grating

Tianxing Wang, Zhijun Yan, Chengbo Mou, Kaiming Zhou, and Lin Zhang
Appl. Opt. 56(12) 3583-3588 (2017)

Single- and dual-wavelength switchable erbium-doped fiber ring laser based on intracavity polarization selective tilted fiber gratings

Chengbo Mou, Pouneh Saffari, Hongyan Fu, Kaiming Zhou, Lin Zhang, and Ian Bennion
Appl. Opt. 48(18) 3455-3459 (2009)

Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating

Jianfeng Li, Zhijun Yan, Zhongyuan Sun, Hongyu Luo, Yulian He, Zhuo Li, Yong Liu, and Lin Zhang
Opt. Express 22(25) 31020-31028 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref] [PubMed]
  2. A. J. McGrath, J. Munch, G. Smith, and P. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37(24), 5706–5709 (1998).
    [Crossref] [PubMed]
  3. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
    [Crossref]
  4. J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36(20), 4008–4010 (2011).
    [Crossref] [PubMed]
  5. X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
    [Crossref] [PubMed]
  6. A. S. Kurkov, “Q-switched all-fiber lasers with saturable absorbers,” Laser Phys. Lett. 8(5), 335–342 (2011).
    [Crossref]
  7. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
    [Crossref] [PubMed]
  8. Z. X. Zhang, Z. W. Xu, and L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012).
    [Crossref] [PubMed]
  9. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35(21), 3709–3711 (2010).
    [Crossref] [PubMed]
  10. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photon. J. 4(3), 869–876 (2012).
    [Crossref]
  11. D. I. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
    [Crossref]
  12. V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
    [Crossref]
  13. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers normal dispersion,” Opt. Commun. 272(2), 431–434 (2007).
    [Crossref]
  14. S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16(26), 21936–21941 (2008).
    [Crossref] [PubMed]
  15. X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35(19), 3249–3251 (2010).
    [Crossref] [PubMed]
  16. E. Ding, Ph. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011).
    [Crossref] [PubMed]
  17. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
    [Crossref] [PubMed]
  18. Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, and W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
    [Crossref] [PubMed]
  19. N. Zhao, M. Liu, H. Liu, X. W. Zheng, Q. Y. Ning, A. P. Luo, Z. C. Luo, and W. C. Xu, “Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber,” Opt. Express 22(9), 10906–10913 (2014).
    [Crossref] [PubMed]
  20. J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  21. J. Zheng, X. Dong, P. Zu, L. Y. Shao, C. C. Chan, Y. Cui, and P. P. Shum, “Magnetic field sensor using tilted fiber grating interacting with magnetic fluid,” Opt. Express 21(15), 17863–17868 (2013).
    [Crossref] [PubMed]
  22. S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10(10), 1461–1463 (1998).
    [Crossref]
  23. X. Dong, H. Zhang, B. Liu, and Y. Miao, “Tilted fiber Bragg gratings: principle and sensing applications,” Photon. Sensors 1(1), 6–30 (2011).
    [Crossref]
  24. K. M. Zhou, G. Simpson, X. F. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
    [Crossref] [PubMed]
  25. C. B. Mou, H. Wang, B. G. Bale, K. M. Zhou, L. Zhang, and I. Bennion, “All-fiber passively mode-locked femtosecond laser using a 45º-tilted fiber grating polarization element,” Opt. Express 18(18), 18906–18911 (2010).
    [Crossref] [PubMed]
  26. Z. Zhang, C. Mou, Z. Yan, K. Zhou, L. Zhang, and S. K. Turitsyn, “Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating,” Opt. Express 21(23), 28297–28303 (2013).
    [Crossref] [PubMed]
  27. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
    [Crossref] [PubMed]
  28. T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
    [Crossref] [PubMed]
  29. X. Chen, K. Zhou, L. Zhan, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 degrees tilted structure,” IEEE Photon. Technol. Lett. 18, 2596–2598 (2006).
    [Crossref]
  30. R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
    [Crossref]
  31. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on Ex-45 degrees tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
    [Crossref]
  32. C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
    [Crossref]

2014 (2)

2013 (4)

2012 (3)

2011 (4)

E. Ding, Ph. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011).
[Crossref] [PubMed]

J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36(20), 4008–4010 (2011).
[Crossref] [PubMed]

A. S. Kurkov, “Q-switched all-fiber lasers with saturable absorbers,” Laser Phys. Lett. 8(5), 335–342 (2011).
[Crossref]

X. Dong, H. Zhang, B. Liu, and Y. Miao, “Tilted fiber Bragg gratings: principle and sensing applications,” Photon. Sensors 1(1), 6–30 (2011).
[Crossref]

2010 (3)

2009 (3)

2008 (2)

2007 (1)

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers normal dispersion,” Opt. Commun. 272(2), 431–434 (2007).
[Crossref]

2006 (3)

2005 (1)

1998 (2)

A. J. McGrath, J. Munch, G. Smith, and P. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37(24), 5706–5709 (1998).
[Crossref] [PubMed]

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

1997 (1)

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

1992 (1)

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

1991 (1)

D. I. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Albert, J.

Bale, B. G.

Bennion, I.

Cai, Z.

Cai, Z. R.

Cao, W. J.

Caucheteur, C.

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Chan, C. C.

Chen, C.

Chen, X.

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

X. Chen, K. Zhou, L. Zhan, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 degrees tilted structure,” IEEE Photon. Technol. Lett. 18, 2596–2598 (2006).
[Crossref]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on Ex-45 degrees tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
[Crossref]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
[Crossref] [PubMed]

Chen, X. F.

Chen, Y.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photon. J. 4(3), 869–876 (2012).
[Crossref]

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers normal dispersion,” Opt. Commun. 272(2), 431–434 (2007).
[Crossref]

Cheng, X.

Choi, S. S.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Cui, Y.

Ding, E.

Dong, X.

Fedotov, Y.

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Fu, H.

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Grelu, Ph.

Guo, T.

Hu, X. H.

Huang, G.

Ivanov, A.

Kang, S. C.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Kim, S. Y.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Kobtsev, S.

Kukarin, S.

Kurkov, A. S.

A. S. Kurkov, “Q-switched all-fiber lasers with saturable absorbers,” Laser Phys. Lett. 8(5), 335–342 (2011).
[Crossref]

Kutz, J. N.

Kwon, S. W.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Laming, R. I.

D. I. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Lee, B.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Lee, S. B.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

Li, X.

Li, X. H.

Lin, Z. B.

Liu, B.

X. Dong, H. Zhang, B. Liu, and Y. Miao, “Tilted fiber Bragg gratings: principle and sensing applications,” Photon. Sensors 1(1), 6–30 (2011).
[Crossref]

Liu, H.

Liu, J.

Liu, M.

Liu, X. M.

Lu, C.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers normal dispersion,” Opt. Commun. 272(2), 431–434 (2007).
[Crossref]

Lu, H.

Luo, A. P.

Luo, Z.

Luo, Z. C.

Matsas, V.

D. I. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Matsas, V. J.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

McGrath, A. J.

Miao, Y.

X. Dong, H. Zhang, B. Liu, and Y. Miao, “Tilted fiber Bragg gratings: principle and sensing applications,” Photon. Sensors 1(1), 6–30 (2011).
[Crossref]

Mou, C.

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Z. Zhang, C. Mou, Z. Yan, K. Zhou, L. Zhang, and S. K. Turitsyn, “Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating,” Opt. Express 21(23), 28297–28303 (2013).
[Crossref] [PubMed]

Mou, C. B.

Munch, J.

Newson, T. P.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Ning, Q. Y.

Payne, D. N.

D. I. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Phillips, M. W.

D. I. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Richardson, D. I.

D. I. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Shao, L.

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Shao, L. Y.

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Shum, P. P.

Simpson, G.

Smith, G.

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Sun, L.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Sun, Z.

Suo, R.

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

Tang, D. Y.

Turitsyn, S. K.

Veitch, P.

Wang, H.

Wang, L. R.

Wang, P.

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Wang, Q. J.

Wang, Y.

Wang, Y. S.

Wang, Z. T.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photon. J. 4(3), 869–876 (2012).
[Crossref]

Wen, S. C.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photon. J. 4(3), 869–876 (2012).
[Crossref]

Weng, J.

Wu, S.

Wu, X.

Xu, H.

Xu, W. C.

Xu, Z. W.

Yan, Z.

Z. Zhang, C. Mou, Z. Yan, K. Zhou, L. Zhang, and S. K. Turitsyn, “Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating,” Opt. Express 21(23), 28297–28303 (2013).
[Crossref] [PubMed]

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Yang, Q. H.

Ye, C.

Yu, X.

Zervas, M. N.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Zhan, L.

X. Chen, K. Zhou, L. Zhan, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 degrees tilted structure,” IEEE Photon. Technol. Lett. 18, 2596–2598 (2006).
[Crossref]

Zhang, H.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photon. J. 4(3), 869–876 (2012).
[Crossref]

X. Dong, H. Zhang, B. Liu, and Y. Miao, “Tilted fiber Bragg gratings: principle and sensing applications,” Photon. Sensors 1(1), 6–30 (2011).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[Crossref] [PubMed]

Zhang, L.

Z. Zhang, C. Mou, Z. Yan, K. Zhou, L. Zhang, and S. K. Turitsyn, “Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating,” Opt. Express 21(23), 28297–28303 (2013).
[Crossref] [PubMed]

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Z. X. Zhang, Z. W. Xu, and L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012).
[Crossref] [PubMed]

C. B. Mou, H. Wang, B. G. Bale, K. M. Zhou, L. Zhang, and I. Bennion, “All-fiber passively mode-locked femtosecond laser using a 45º-tilted fiber grating polarization element,” Opt. Express 18(18), 18906–18911 (2010).
[Crossref] [PubMed]

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
[Crossref] [PubMed]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on Ex-45 degrees tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
[Crossref]

K. M. Zhou, G. Simpson, X. F. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[Crossref] [PubMed]

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, X.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhang, Z. X.

Zhao, C. J.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photon. J. 4(3), 869–876 (2012).
[Crossref]

Zhao, L. M.

Zhao, N.

Zhao, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhao, W.

Zheng, J.

Zheng, X. W.

Zhou, K.

Z. Zhang, C. Mou, Z. Yan, K. Zhou, L. Zhang, and S. K. Turitsyn, “Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating,” Opt. Express 21(23), 28297–28303 (2013).
[Crossref] [PubMed]

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

X. Chen, K. Zhou, L. Zhan, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 degrees tilted structure,” IEEE Photon. Technol. Lett. 18, 2596–2598 (2006).
[Crossref]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
[Crossref] [PubMed]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on Ex-45 degrees tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24(12), 5087–5094 (2006).
[Crossref]

Zhou, K. M.

Zhou, M.

Zu, P.

Appl. Opt. (1)

Electron. Lett. (1)

D. I. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

IEEE Photon. J. (1)

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photon. J. 4(3), 869–876 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10(10), 1461–1463 (1998).
[Crossref]

X. Chen, K. Zhou, L. Zhan, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 degrees tilted structure,” IEEE Photon. Technol. Lett. 18, 2596–2598 (2006).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Laser Phys. Lett. (1)

A. S. Kurkov, “Q-switched all-fiber lasers with saturable absorbers,” Laser Phys. Lett. 8(5), 335–342 (2011).
[Crossref]

Meas. Sci. Technol. (1)

R. Suo, X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings,” Meas. Sci. Technol. 20(3), 034015 (2009).
[Crossref]

Opt. Commun. (3)

C. Mou, K. Zhou, Z. Yan, H. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fibre grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers normal dispersion,” Opt. Commun. 272(2), 431–434 (2007).
[Crossref]

Opt. Express (9)

S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16(26), 21936–21941 (2008).
[Crossref] [PubMed]

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

C. B. Mou, H. Wang, B. G. Bale, K. M. Zhou, L. Zhang, and I. Bennion, “All-fiber passively mode-locked femtosecond laser using a 45º-tilted fiber grating polarization element,” Opt. Express 18(18), 18906–18911 (2010).
[Crossref] [PubMed]

Z. X. Zhang, Z. W. Xu, and L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012).
[Crossref] [PubMed]

J. Zheng, X. Dong, P. Zu, L. Y. Shao, C. C. Chan, Y. Cui, and P. P. Shum, “Magnetic field sensor using tilted fiber grating interacting with magnetic fluid,” Opt. Express 21(15), 17863–17868 (2013).
[Crossref] [PubMed]

Z. Zhang, C. Mou, Z. Yan, K. Zhou, L. Zhang, and S. K. Turitsyn, “Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating,” Opt. Express 21(23), 28297–28303 (2013).
[Crossref] [PubMed]

N. Zhao, M. Liu, H. Liu, X. W. Zheng, Q. Y. Ning, A. P. Luo, Z. C. Luo, and W. C. Xu, “Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber,” Opt. Express 22(9), 10906–10913 (2014).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

Opt. Lett. (8)

Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, and W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
[Crossref] [PubMed]

T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
[Crossref] [PubMed]

K. M. Zhou, G. Simpson, X. F. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[Crossref] [PubMed]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 ° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
[Crossref] [PubMed]

X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35(19), 3249–3251 (2010).
[Crossref] [PubMed]

Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35(21), 3709–3711 (2010).
[Crossref] [PubMed]

E. Ding, Ph. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011).
[Crossref] [PubMed]

J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36(20), 4008–4010 (2011).
[Crossref] [PubMed]

Photon. Sensors (1)

X. Dong, H. Zhang, B. Liu, and Y. Miao, “Tilted fiber Bragg gratings: principle and sensing applications,” Photon. Sensors 1(1), 6–30 (2011).
[Crossref]

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Measured transmission of the LA-TFG from 1550 nm to 1575 nm range under different polarization excitation (the inset is transmission spectrum from 1200 nm to 1700 nm).
Fig. 2
Fig. 2 Schematic of pulsed fiber laser with an LA-TFG (Q-switching without DSF, mode-locking with DSF).
Fig. 3
Fig. 3 Spectra of single-wavelength (black dotted line at 1554.9 nm, blue dashed line at 1561 nm) and dual-wavelength (red solid line) Q-switched pulses.
Fig. 4
Fig. 4 Typical Q-switched pulse train and single pulse zoom-in under single-wavelength operation.
Fig. 5
Fig. 5 Dual-wavelength Q-switched pulse train and its single pulse zoom-in.
Fig. 6
Fig. 6 Switchable spectra of single-wavelength mode-locked pulses.
Fig. 7
Fig. 7 Typical mode-locked pulse train and its single pulse zoom-in under single-wavelength operation.
Fig. 8
Fig. 8 Spectrum of dual-wavelength mode-locked pulse.
Fig. 9
Fig. 9 Dual-wavelength mode-locked pulse train and its single pulse zoom-in.
Fig. 10
Fig. 10 (a) Single-wavelength pulse broadening with the pump power increased, (b) measured pulse width versus the pump power (the inset of is RF spectrum).
Fig. 11
Fig. 11 (a) Dual-wavelength pulse broadening with the pump power increased, (b) measured pulse width and output pulse energy versus the pump power.

Metrics