Abstract

We report flexible dissipative soliton generation from an all-fiberized all-normal-dispersion (ANDi) long cavity actively mode locked ytterbium doped fiber laser based on improved harmonic mode locking technique. The laser is featured with unusually wide and fine tunabilities in repetition rate and operating wavelength, meanwhile superior stability is maintained. The repetition rate of the laser can be flexibly controlled from 226 kHz to 6.25 GHz (corresponding to the highest 27655th order harmonic mode locking) in the interval of 226 kHz, while supermode suppression is confined above 50 dB and the pulse duration is retained in the range of 38 ps~80 ps. As high as 4.3 nJ pulse energy can be achieved with a low pump power of 160 mW when operating at the fundamental mode locking regime. The operating wavelength of the laser can be tuned in the wide range of 1005 nm~1100 nm. As far as we know, it is the first demonstration of up to ten thousands order stable harmonic mode locking in ANDi fiber laser, which manifests the capability of generating both high energy pulse and ultra-high repetition rate pulse in a single ANDi cavity. The destabilization of dissipative soliton under strong pump is also demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable passively harmonic mode-locked Yb-doped fiber laser with Lyot–Sagnac filter

Ming Li, Xin Zou, Jian Wu, Jindan Shi, Jifang Qiu, and Xiaobin Hong
Appl. Opt. 54(29) 8800-8803 (2015)

All-PM wavelength-tunable and harmonically mode-locking Yb-doped fiber laser

Shangjing Lin, Jianguo Yu, Wuyi Li, and Jinlong Ke
Appl. Opt. 57(25) 7410-7414 (2018)

All-normal-dispersion passive harmonic mode-locking 220  fs ytterbium fiber laser

Junli Wang, Xiangbao Bu, Rui Wang, Long Zhang, Jiangfeng Zhu, Hao Teng, Hainian Han, and Zhiyi Wei
Appl. Opt. 53(23) 5088-5091 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. W. Holman, D. J. Jones, D. D. Hudson, and J. Ye, “Precise frequency transfer through a fiber network by use of 1.5-μm mode-locked sources,” Opt. Lett. 29(13), 1554–1556 (2004).
    [Crossref] [PubMed]
  2. T. Jiang, G. Wang, W. Zhang, C. Li, A. Wang, and Z. Zhang, “Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz,” Opt. Lett. 38(4), 443–445 (2013).
    [Crossref] [PubMed]
  3. F. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13(7), 2716–2721 (2005).
    [Crossref] [PubMed]
  4. S.-P. Chen, H.-W. Chen, J. Hou, and Z.-J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
    [Crossref] [PubMed]
  5. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  6. S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16(26), 21936–21941 (2008).
    [Crossref] [PubMed]
  7. C. Lecaplain and P. Grelu, “Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser,” Opt. Express 21(9), 10897–10902 (2013).
    [Crossref] [PubMed]
  8. Z.-C. Luo, M. Liu, H. Liu, X.-W. Zheng, A.-P. Luo, C.-J. Zhao, H. Zhang, S.-C. Wen, and W.-C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
    [Crossref] [PubMed]
  9. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
    [Crossref] [PubMed]
  10. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
    [Crossref]
  11. X. Zhu, C. Wang, S. Liu, and G. Zhang, “Tunable high-order harmonic mode-locking in Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 24(9), 754–756 (2012).
    [Crossref]
  12. J. Peng, L. Zhan, S. Luo, and Q. Shen, “Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser,” J. Lightwave Technol. 31(16), 3009–3014 (2013).
    [Crossref]
  13. S. Huang, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, and R. Lin, “High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber,” Laser Phys. 24(1), 015001 (2014).
    [Crossref]
  14. J. Wang, X. Bu, R. Wang, L. Zhang, J. Zhu, H. Teng, H. Han, and Z. Wei, “All-normal-dispersion passive harmonic mode-locking 220 fs ytterbium fiber laser,” Appl. Opt. 53(23), 5088–5091 (2014).
    [Crossref] [PubMed]
  15. W. Sheng-Min, J. Siao-Shan, H. Wei-Wei, and L. Yinchieh, “Asynchronous harmonic mode locking in an all-normal dispersion Yb-doped fiber laser,” IEEE Photon. J. 5(1), 1500207 (2013).
    [Crossref]
  16. X. Wu, D. Tang, L. Zhao, H. Zhang, and R. J. Knize, “Evidence of high-order vector dissipative soliton in a fiber laser,” in Frontiers in Optics 2010/Laser Science XXVI(Optical Society of America, Rochester, New York, 2010), p. FTuJ2.
  17. L. Dongfeng, Z. Xiaojun, W. Chinhua, Y. Jianjun, Z. Guiju, F. Erxi, and W. Jiajun, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22(23), 1726–1728 (2010).
    [Crossref]
  18. B. Ortaç, A. Hideur, and M. Brunel, “Passive harmonic mode locking with a high-power ytterbium-doped double-clad fiber laser,” Opt. Lett. 29(17), 1995–1997 (2004).
    [Crossref] [PubMed]
  19. W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, “Tunable active harmonic mode-locking Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 25(23), 2247–2250 (2013).
    [Crossref]
  20. H. Chen, S.-P. Chen, Z.-F. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
    [Crossref]
  21. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  22. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [Crossref]
  23. L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
    [Crossref] [PubMed]
  24. R. Wang, Y. Dai, L. Yan, J. Wu, K. Xu, Y. Li, and J. Lin, “Dissipative soliton in actively mode-locked fiber laser,” Opt. Express 20(6), 6406–6411 (2012).
    [Crossref] [PubMed]
  25. A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
    [Crossref]
  26. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B 9(8), 1358–1361 (1992).
    [Crossref]
  27. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  28. X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
    [Crossref] [PubMed]
  29. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75(3), 033811 (2007).
    [Crossref]
  30. L. Wang, X. Liu, Y. Gong, D. Mao, and X. Li, “Transitional and steady mode-locking evolution of dissipative solitons,” Appl. Opt. 49(14), 2665–2669 (2010).
    [Crossref]
  31. W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27(10), 1978–1982 (2010).
    [Crossref] [PubMed]
  32. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [Crossref] [PubMed]
  33. Z. Zuxing and D. Guoxing, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J. 3(6), 1023–1029 (2011).
    [Crossref]
  34. C. Aguergaray, A. Runge, M. Erkintalo, and N. G. Broderick, “Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability,” Opt. Lett. 38(15), 2644–2646 (2013).
    [Crossref] [PubMed]

2014 (3)

S. Huang, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, and R. Lin, “High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber,” Laser Phys. 24(1), 015001 (2014).
[Crossref]

H. Chen, S.-P. Chen, Z.-F. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

J. Wang, X. Bu, R. Wang, L. Zhang, J. Zhu, H. Teng, H. Han, and Z. Wei, “All-normal-dispersion passive harmonic mode-locking 220 fs ytterbium fiber laser,” Appl. Opt. 53(23), 5088–5091 (2014).
[Crossref] [PubMed]

2013 (7)

T. Jiang, G. Wang, W. Zhang, C. Li, A. Wang, and Z. Zhang, “Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz,” Opt. Lett. 38(4), 443–445 (2013).
[Crossref] [PubMed]

C. Lecaplain and P. Grelu, “Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser,” Opt. Express 21(9), 10897–10902 (2013).
[Crossref] [PubMed]

C. Aguergaray, A. Runge, M. Erkintalo, and N. G. Broderick, “Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability,” Opt. Lett. 38(15), 2644–2646 (2013).
[Crossref] [PubMed]

J. Peng, L. Zhan, S. Luo, and Q. Shen, “Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser,” J. Lightwave Technol. 31(16), 3009–3014 (2013).
[Crossref]

Z.-C. Luo, M. Liu, H. Liu, X.-W. Zheng, A.-P. Luo, C.-J. Zhao, H. Zhang, S.-C. Wen, and W.-C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
[Crossref] [PubMed]

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, “Tunable active harmonic mode-locking Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 25(23), 2247–2250 (2013).
[Crossref]

W. Sheng-Min, J. Siao-Shan, H. Wei-Wei, and L. Yinchieh, “Asynchronous harmonic mode locking in an all-normal dispersion Yb-doped fiber laser,” IEEE Photon. J. 5(1), 1500207 (2013).
[Crossref]

2012 (3)

X. Zhu, C. Wang, S. Liu, and G. Zhang, “Tunable high-order harmonic mode-locking in Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 24(9), 754–756 (2012).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

R. Wang, Y. Dai, L. Yan, J. Wu, K. Xu, Y. Li, and J. Lin, “Dissipative soliton in actively mode-locked fiber laser,” Opt. Express 20(6), 6406–6411 (2012).
[Crossref] [PubMed]

2011 (1)

Z. Zuxing and D. Guoxing, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J. 3(6), 1023–1029 (2011).
[Crossref]

2010 (4)

2009 (3)

2008 (4)

S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16(26), 21936–21941 (2008).
[Crossref] [PubMed]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

2007 (1)

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75(3), 033811 (2007).
[Crossref]

2006 (2)

2005 (2)

F. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13(7), 2716–2721 (2005).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

2004 (2)

1992 (1)

Aguergaray, C.

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Amrani, F.

Anderson, D.

Broderick, N. G.

Brunel, M.

Bu, X.

Buckley, J.

Chen, H.

H. Chen, S.-P. Chen, Z.-F. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

Chen, H.-W.

Chen, J.

Chen, S.-P.

H. Chen, S.-P. Chen, Z.-F. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

S.-P. Chen, H.-W. Chen, J. Hou, and Z.-J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
[Crossref] [PubMed]

Chinhua, W.

L. Dongfeng, Z. Xiaojun, W. Chinhua, Y. Jianjun, Z. Guiju, F. Erxi, and W. Jiajun, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22(23), 1726–1728 (2010).
[Crossref]

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27(10), 1978–1982 (2010).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[Crossref]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

Dai, Y.

Desaix, M.

Dongfeng, L.

L. Dongfeng, Z. Xiaojun, W. Chinhua, Y. Jianjun, Z. Guiju, F. Erxi, and W. Jiajun, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22(23), 1726–1728 (2010).
[Crossref]

Erkintalo, M.

Erxi, F.

L. Dongfeng, Z. Xiaojun, W. Chinhua, Y. Jianjun, Z. Guiju, F. Erxi, and W. Jiajun, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22(23), 1726–1728 (2010).
[Crossref]

Fedotov, Y.

Gong, Y.

Grelu, P.

Guiju, Z.

L. Dongfeng, Z. Xiaojun, W. Chinhua, Y. Jianjun, Z. Guiju, F. Erxi, and W. Jiajun, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22(23), 1726–1728 (2010).
[Crossref]

Guoxing, D.

Z. Zuxing and D. Guoxing, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J. 3(6), 1023–1029 (2011).
[Crossref]

Haboucha, A.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Han, H.

Hideur, A.

Holman, K. W.

Hou, J.

H. Chen, S.-P. Chen, Z.-F. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

S.-P. Chen, H.-W. Chen, J. Hou, and Z.-J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
[Crossref] [PubMed]

Huang, S.

S. Huang, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, and R. Lin, “High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber,” Laser Phys. 24(1), 015001 (2014).
[Crossref]

Hudson, D. D.

Ilday, F.

Jiajun, W.

L. Dongfeng, Z. Xiaojun, W. Chinhua, Y. Jianjun, Z. Guiju, F. Erxi, and W. Jiajun, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22(23), 1726–1728 (2010).
[Crossref]

Jiang, T.

Jiang, Z.-F.

H. Chen, S.-P. Chen, Z.-F. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

Jianjun, Y.

L. Dongfeng, Z. Xiaojun, W. Chinhua, Y. Jianjun, Z. Guiju, F. Erxi, and W. Jiajun, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22(23), 1726–1728 (2010).
[Crossref]

Jones, D. J.

Kärtner, F.

Kobtsev, S.

Komarov, A.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Kukarin, S.

Leblond, H.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75(3), 033811 (2007).
[Crossref]

Lecaplain, C.

Lederer, F.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75(3), 033811 (2007).
[Crossref]

Li, C.

Li, H.

S. Huang, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, and R. Lin, “High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber,” Laser Phys. 24(1), 015001 (2014).
[Crossref]

Li, W.

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, “Tunable active harmonic mode-locking Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 25(23), 2247–2250 (2013).
[Crossref]

Li, X.

Li, Y.

Lin, A.

Lin, J.

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, “Tunable active harmonic mode-locking Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 25(23), 2247–2250 (2013).
[Crossref]

R. Wang, Y. Dai, L. Yan, J. Wu, K. Xu, Y. Li, and J. Lin, “Dissipative soliton in actively mode-locked fiber laser,” Opt. Express 20(6), 6406–6411 (2012).
[Crossref] [PubMed]

Lin, R.

S. Huang, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, and R. Lin, “High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber,” Laser Phys. 24(1), 015001 (2014).
[Crossref]

Lisak, M.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, H.

Liu, M.

Liu, S.

X. Zhu, C. Wang, S. Liu, and G. Zhang, “Tunable high-order harmonic mode-locking in Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 24(9), 754–756 (2012).
[Crossref]

Liu, X.

Liu, Z.-J.

Lu, K.

Luo, A.-P.

Luo, S.

Luo, Z.-C.

Malomed, B. A.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75(3), 033811 (2007).
[Crossref]

Mao, D.

Martel, G.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Mazilu, D.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75(3), 033811 (2007).
[Crossref]

Mihalache, D.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75(3), 033811 (2007).
[Crossref]

Ortaç, B.

Peng, J.

Qiu, J.

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, “Tunable active harmonic mode-locking Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 25(23), 2247–2250 (2013).
[Crossref]

Quiroga-Teixeiro, M. L.

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27(10), 1978–1982 (2010).
[Crossref] [PubMed]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Runge, A.

Salhi, M.

Sanchez, F.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Shen, Q.

Sheng-Min, W.

W. Sheng-Min, J. Siao-Shan, H. Wei-Wei, and L. Yinchieh, “Asynchronous harmonic mode locking in an all-normal dispersion Yb-doped fiber laser,” IEEE Photon. J. 5(1), 1500207 (2013).
[Crossref]

Siao-Shan, J.

W. Sheng-Min, J. Siao-Shan, H. Wei-Wei, and L. Yinchieh, “Asynchronous harmonic mode locking in an all-normal dispersion Yb-doped fiber laser,” IEEE Photon. J. 5(1), 1500207 (2013).
[Crossref]

Sun, H.

Tang, D.

Tang, D. Y.

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Teng, H.

Wang, A.

Wang, C.

X. Zhu, C. Wang, S. Liu, and G. Zhang, “Tunable high-order harmonic mode-locking in Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 24(9), 754–756 (2012).
[Crossref]

Wang, G.

Wang, J.

Wang, L.

Wang, R.

Wang, Y.

S. Huang, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, and R. Lin, “High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber,” Laser Phys. 24(1), 015001 (2014).
[Crossref]

X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
[Crossref] [PubMed]

Wei, Z.

Wei-Wei, H.

W. Sheng-Min, J. Siao-Shan, H. Wei-Wei, and L. Yinchieh, “Asynchronous harmonic mode locking in an all-normal dispersion Yb-doped fiber laser,” IEEE Photon. J. 5(1), 1500207 (2013).
[Crossref]

Wen, S.-C.

Wise, F.

Wise, F. W.

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27(10), 1978–1982 (2010).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[Crossref]

Wu, J.

Wu, X.

Xiaojun, Z.

L. Dongfeng, Z. Xiaojun, W. Chinhua, Y. Jianjun, Z. Guiju, F. Erxi, and W. Jiajun, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22(23), 1726–1728 (2010).
[Crossref]

Xu, K.

Xu, W.-C.

Yan, L.

Yan, P.

S. Huang, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, and R. Lin, “High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber,” Laser Phys. 24(1), 015001 (2014).
[Crossref]

Ye, J.

Yin, K.

H. Chen, S.-P. Chen, Z.-F. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

Yin, Z.

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, “Tunable active harmonic mode-locking Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 25(23), 2247–2250 (2013).
[Crossref]

Yinchieh, L.

W. Sheng-Min, J. Siao-Shan, H. Wei-Wei, and L. Yinchieh, “Asynchronous harmonic mode locking in an all-normal dispersion Yb-doped fiber laser,” IEEE Photon. J. 5(1), 1500207 (2013).
[Crossref]

Zhan, L.

Zhang, G.

S. Huang, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, and R. Lin, “High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber,” Laser Phys. 24(1), 015001 (2014).
[Crossref]

X. Zhu, C. Wang, S. Liu, and G. Zhang, “Tunable high-order harmonic mode-locking in Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 24(9), 754–756 (2012).
[Crossref]

Zhang, H.

Zhang, L.

Zhang, W.

Zhang, Z.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, C.-J.

Zhao, J.

S. Huang, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, and R. Lin, “High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber,” Laser Phys. 24(1), 015001 (2014).
[Crossref]

Zhao, L.

Zhao, L. M.

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, W.

Zheng, X.-W.

Zhu, J.

Zhu, X.

X. Zhu, C. Wang, S. Liu, and G. Zhang, “Tunable high-order harmonic mode-locking in Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 24(9), 754–756 (2012).
[Crossref]

Zuxing, Z.

Z. Zuxing and D. Guoxing, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J. 3(6), 1023–1029 (2011).
[Crossref]

Appl. Opt. (2)

IEEE Photon. J. (2)

Z. Zuxing and D. Guoxing, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J. 3(6), 1023–1029 (2011).
[Crossref]

W. Sheng-Min, J. Siao-Shan, H. Wei-Wei, and L. Yinchieh, “Asynchronous harmonic mode locking in an all-normal dispersion Yb-doped fiber laser,” IEEE Photon. J. 5(1), 1500207 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (4)

L. Dongfeng, Z. Xiaojun, W. Chinhua, Y. Jianjun, Z. Guiju, F. Erxi, and W. Jiajun, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22(23), 1726–1728 (2010).
[Crossref]

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, “Tunable active harmonic mode-locking Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 25(23), 2247–2250 (2013).
[Crossref]

H. Chen, S.-P. Chen, Z.-F. Jiang, K. Yin, and J. Hou, “All fiber actively mode-locked ytterbium-doped laser with large range temporal tunability,” IEEE Photon. Technol. Lett. 26(17), 1786–1789 (2014).
[Crossref]

X. Zhu, C. Wang, S. Liu, and G. Zhang, “Tunable high-order harmonic mode-locking in Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 24(9), 754–756 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[Crossref]

Laser Phys. (1)

S. Huang, Y. Wang, P. Yan, G. Zhang, J. Zhao, H. Li, and R. Lin, “High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber,” Laser Phys. 24(1), 015001 (2014).
[Crossref]

Nat. Photonics (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Express (7)

Opt. Fiber Technol. (1)

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Opt. Lett. (8)

L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[Crossref] [PubMed]

C. Aguergaray, A. Runge, M. Erkintalo, and N. G. Broderick, “Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability,” Opt. Lett. 38(15), 2644–2646 (2013).
[Crossref] [PubMed]

Z.-C. Luo, M. Liu, H. Liu, X.-W. Zheng, A.-P. Luo, C.-J. Zhao, H. Zhang, S.-C. Wen, and W.-C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
[Crossref] [PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

K. W. Holman, D. J. Jones, D. D. Hudson, and J. Ye, “Precise frequency transfer through a fiber network by use of 1.5-μm mode-locked sources,” Opt. Lett. 29(13), 1554–1556 (2004).
[Crossref] [PubMed]

T. Jiang, G. Wang, W. Zhang, C. Li, A. Wang, and Z. Zhang, “Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz,” Opt. Lett. 38(4), 443–445 (2013).
[Crossref] [PubMed]

B. Ortaç, A. Hideur, and M. Brunel, “Passive harmonic mode locking with a high-power ytterbium-doped double-clad fiber laser,” Opt. Lett. 29(17), 1995–1997 (2004).
[Crossref] [PubMed]

Phys. Rev. A (3)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75(3), 033811 (2007).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Other (1)

X. Wu, D. Tang, L. Zhao, H. Zhang, and R. J. Knize, “Evidence of high-order vector dissipative soliton in a fiber laser,” in Frontiers in Optics 2010/Laser Science XXVI(Optical Society of America, Rochester, New York, 2010), p. FTuJ2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the actively mode-locked Yb-doped fiber laser. WDM: wavelength-division multiplexer. YDF: Yb-doped fiber. ISO: optical isolator. PC: polarization controller. MZIM: Mach Zehnder intensity modulator.
Fig. 2
Fig. 2 (a) Oscilloscope trace of the mode-locking pulses. (b) Optical spectrum of the output pulse. (c) RF spectrum of the output pulses with a span of 12 kHz and (inset) 24 MHz. (d) The output power versus the pump power.
Fig. 3
Fig. 3 The pulse trains and RF spectra of the 10th, 1600th, 5120th, and 27655th HML.
Fig. 4
Fig. 4 (a) The output power and pulse width variations with different repetition rate; (b) The output pulse energy with different repetition rate; (c) The evolution of the optical spectrum versus different HML order.
Fig. 5
Fig. 5 (a) The evolution of the optical spectrum of the dissipative soliton at different wavelength. (b) The evolution of the optical spectrum of the laser in continuous wave (CW) regime. (c) The variations of output power with different operating wavelength under pulse mode and CW mode.
Fig. 6
Fig. 6 (a) The fluctuating waveforms observed in the oscilloscope. (b) The evolution of the optical spectrum of the laser with increasing pump power.

Metrics