Abstract

The proton exchanged (PE) planar and channel waveguides in a 500 nm thick single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) were studied. The mature PE technique and strong confinement of light in the LN single-crystal thin film were used. The single mode and cut-off conditions of the channel waveguides were obtained by finite difference simulation. The results showed that the single mode channel waveguide would form if the width of the PE region was between 0.75 μm and 2.1 μm in the β4 phase. The channel waveguide in LNOI had a much smaller mode size than that in the bulk material due to the high-refractive-index contrast. The mode size reached as small as 0.6 μm2 in simulation. In the experiment, the refractive index and phase transition after PE in LNOI were analyzed using the prism coupling method and X-ray diffraction. Three different width waveguides (5 μm, 7 μm and 11 μm) were optically characterized. Near-field intensity distribution showed that their mode sizes were 3.3 μm2, 5 μm2 and 7 μm2. The propagation losses were evaluated to be about 16 dB/cm, 12 dB/cm and 11 dB/cm, respectively. The results indicate that PE is a promising method for building more complicated photonic integrated circuits in single-crystal LN thin film.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film

Lutong Cai, Ruirui Kong, Yiwen Wang, and Hui Hu
Opt. Express 23(22) 29211-29221 (2015)

Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe

Shuang Li, Lutong Cai, Yiwen Wang, Yunpeng Jiang, and Hui Hu
Opt. Express 23(19) 24212-24219 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6(4), 488–503 (2012).
    [Crossref]
  2. Y. S. Lee, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).
    [Crossref]
  3. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
    [Crossref]
  4. K. Diest, M. J. Archer, J. A. Dionne, Y.-B. Park, M. J. Czubakowski, and H. A. Atwater, “Silver diffusion bonding and layer transfer of lithium niobate to silicon,” Appl. Phys. Lett. 93(9), 092906 (2008).
    [Crossref]
  5. F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009).
    [Crossref] [PubMed]
  6. W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
    [Crossref]
  7. L. Cai, H. Han, S. Zhang, H. Hu, and K. Wang, “Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator,” Opt. Lett. 39(7), 2094–2096 (2014).
    [Crossref] [PubMed]
  8. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
    [Crossref]
  9. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
    [Crossref] [PubMed]
  10. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  11. L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
    [Crossref] [PubMed]
  12. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
    [Crossref]
  13. R. Wang and S. A. Bhave, “Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators,” http://arxiv.org/abs/1409.6351 (2014).
  14. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  15. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
    [Crossref] [PubMed]
  16. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [Crossref] [PubMed]
  17. M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO(3) waveguides,” Opt. Lett. 16(23), 1844–1846 (1991).
    [Crossref] [PubMed]
  18. G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
    [Crossref]
  19. T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO(3) waveguides,” Opt. Lett. 18(5), 346–348 (1993).
    [Crossref] [PubMed]
  20. X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10(9), 1302–1313 (1992).
    [Crossref]
  21. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
    [Crossref]
  22. H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, and M.-P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
    [Crossref] [PubMed]
  23. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [Crossref] [PubMed]
  24. J. Sun and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO: LiNbO3 ridge waveguides,” Opt. Lett. 37(11), 2028–2030 (2012).
    [Crossref] [PubMed]
  25. G. Nunzi Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19(4), 3651–3656 (2011).
    [Crossref] [PubMed]
  26. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
    [Crossref] [PubMed]
  27. Lumerical Solutions, http://www.lumerical.com/
  28. N. Goto and G. L. Yip, “Characterization of proton-exchange and annealed LiNbO(3) waveguides with pyrophosphoric acid,” Appl. Opt. 28(1), 60–65 (1989).
    [Crossref] [PubMed]
  29. N. Uchida, “Optical waveguide loaded with high refractive-index strip film,” Appl. Opt. 15(1), 179–182 (1976).
    [Crossref] [PubMed]
  30. M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21(11), 794–796 (1996).
    [Crossref] [PubMed]
  31. Yu. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82(3), 1010–1017 (1997).
    [Crossref]
  32. Y. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35(36), 7056–7060 (1996).
    [Crossref] [PubMed]
  33. J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006).
    [Crossref] [PubMed]
  34. R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]
  35. L. Wang, J. H. Zhao, and G. Fu, “Ridge LiNbO3 waveguide fabricated by a novel wet etching/MeV oxygen ion implantation method,” J. Lightwave Technol. 28(9), 1344–1348 (2010).
    [Crossref]
  36. H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood., “Helium-ion-induced radiation damage in LiNbO₃ thin-film electro-optic modulators,” Opt. Express 22(16), 19653–19661 (2014).
    [Crossref] [PubMed]
  37. K. Ito and K. Kawamoto, “Relationship between propagation loss and crystallinity in proton-exchanged and annealed LiNbO3 optical waveguides,” Jpn. J. Appl. Phys. 37(7), 3977–3982 (1998).
    [Crossref]
  38. M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
    [Crossref]

2014 (3)

2013 (3)

2012 (3)

2011 (2)

Y. S. Lee, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).
[Crossref]

G. Nunzi Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19(4), 3651–3656 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

2008 (1)

K. Diest, M. J. Archer, J. A. Dionne, Y.-B. Park, M. J. Czubakowski, and H. A. Atwater, “Silver diffusion bonding and layer transfer of lithium niobate to silicon,” Appl. Phys. Lett. 93(9), 092906 (2008).
[Crossref]

2007 (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

2006 (1)

2005 (3)

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
[Crossref]

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

2002 (2)

2001 (1)

1998 (2)

K. Ito and K. Kawamoto, “Relationship between propagation loss and crystallinity in proton-exchanged and annealed LiNbO3 optical waveguides,” Jpn. J. Appl. Phys. 37(7), 3977–3982 (1998).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

1997 (1)

Yu. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82(3), 1010–1017 (1997).
[Crossref]

1996 (2)

1994 (1)

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[Crossref]

1993 (1)

1992 (1)

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10(9), 1302–1313 (1992).
[Crossref]

1991 (2)

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO(3) waveguides,” Opt. Lett. 16(23), 1844–1846 (1991).
[Crossref] [PubMed]

1989 (1)

1985 (1)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

1976 (1)

Arbore, M. A.

Archer, M. J.

K. Diest, M. J. Archer, J. A. Dionne, Y.-B. Park, M. J. Czubakowski, and H. A. Atwater, “Silver diffusion bonding and layer transfer of lithium niobate to silicon,” Appl. Phys. Lett. 93(9), 092906 (2008).
[Crossref]

Atikian, H. A.

Atwater, H. A.

K. Diest, M. J. Archer, J. A. Dionne, Y.-B. Park, M. J. Czubakowski, and H. A. Atwater, “Silver diffusion bonding and layer transfer of lithium niobate to silicon,” Appl. Phys. Lett. 93(9), 092906 (2008).
[Crossref]

Baida, F. I.

Bakhru, H.

H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood., “Helium-ion-induced radiation damage in LiNbO₃ thin-film electro-optic modulators,” Opt. Express 22(16), 19653–19661 (2014).
[Crossref] [PubMed]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Baldi, P.

Bernal, M.-P.

Berneschi, S.

Blanton, T.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[Crossref]

Bortz, M. L.

Braunstein, G.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[Crossref]

Brown, T.

Burek, M. J.

Burns, W. K.

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

Cai, L.

Cao, X.

Cao, X. F.

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10(9), 1302–1313 (1992).
[Crossref]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Cerrina, F.

Chen, L.

Chiles, J.

Chou, M. H.

Collet, M.

Cosi, F.

Courjal, N.

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Czubakowski, M. J.

K. Diest, M. J. Archer, J. A. Dionne, Y.-B. Park, M. J. Czubakowski, and H. A. Atwater, “Silver diffusion bonding and layer transfer of lithium niobate to silicon,” Appl. Phys. Lett. 93(9), 092906 (2008).
[Crossref]

Dadap, J. I.

Das, B.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

De Micheli, M. P.

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Dey, D.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

Diest, K.

K. Diest, M. J. Archer, J. A. Dionne, Y.-B. Park, M. J. Czubakowski, and H. A. Atwater, “Silver diffusion bonding and layer transfer of lithium niobate to silicon,” Appl. Phys. Lett. 93(9), 092906 (2008).
[Crossref]

Dionne, J. A.

K. Diest, M. J. Archer, J. A. Dionne, Y.-B. Park, M. J. Czubakowski, and H. A. Atwater, “Silver diffusion bonding and layer transfer of lithium niobate to silicon,” Appl. Phys. Lett. 93(9), 092906 (2008).
[Crossref]

Dispenza, M.

El Hadi, K.

Fathpour, S.

Fedorov, V. A.

Yu. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82(3), 1010–1017 (1997).
[Crossref]

Y. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35(36), 7056–7060 (1996).
[Crossref] [PubMed]

Fejer, M. M.

Fu, G.

Fujimura, M.

Fujiwara, T.

Gischkat, T.

Goto, N.

Greenblatt, A. S.

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guyot, C.

Han, H.

Hartung, H.

Höche, T.

Howerton, M. M.

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

Hu, H.

Huang, H.-C.

Huang, I.-C.

Ito, K.

K. Ito and K. Kawamoto, “Relationship between propagation loss and crystallinity in proton-exchanged and annealed LiNbO3 optical waveguides,” Jpn. J. Appl. Phys. 37(7), 3977–3982 (1998).
[Crossref]

Kawamoto, K.

K. Ito and K. Kawamoto, “Relationship between propagation loss and crystallinity in proton-exchanged and annealed LiNbO3 optical waveguides,” Jpn. J. Appl. Phys. 37(7), 3977–3982 (1998).
[Crossref]

Khan, S.

Kimerling, L. C.

Kley, E.-B.

Korkishko, Y. N.

Korkishko, Yu. N.

Yu. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82(3), 1010–1017 (1997).
[Crossref]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Kurz, J. R.

Kymissis, I.

Lee, K. K.

Lee, S. T.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[Crossref]

Lee, S.-S.

Y. S. Lee, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).
[Crossref]

Lee, W.-G.

Y. S. Lee, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).
[Crossref]

Lee, Y. S.

Y. S. Lee, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).
[Crossref]

Levy, M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Leycuras, A.

Lim, D. R.

Lin, Z.

Lipson, M.

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Loncar, M.

Lu, H.

Ma, J.

Malladi, G.

Nunzi Conti, G.

Osgood, R. M.

H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood., “Helium-ion-induced radiation damage in LiNbO₃ thin-film electro-optic modulators,” Opt. Express 22(16), 19653–19661 (2014).
[Crossref] [PubMed]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Parameswaran, K. R.

Park, Y.-B.

K. Diest, M. J. Archer, J. A. Dionne, Y.-B. Park, M. J. Czubakowski, and H. A. Atwater, “Silver diffusion bonding and layer transfer of lithium niobate to silicon,” Appl. Phys. Lett. 93(9), 092906 (2008).
[Crossref]

Paz-Pujalt, G. R.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[Crossref]

Pelli, S.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Preble, S. F.

Rabiei, P.

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

Ramaswamy, R. V.

T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO(3) waveguides,” Opt. Lett. 18(5), 346–348 (1993).
[Crossref] [PubMed]

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10(9), 1302–1313 (1992).
[Crossref]

Reano, R. M.

Regener, R.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Reza, S.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Ricken, R.

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

Righini, G. C.

Robinson, J. T.

Roussev, R. V.

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
[Crossref]

Route, R. K.

Sadani, B.

Salter, L. M.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[Crossref]

Schrempel, F.

Secchi, A.

Shin, J.

Skeath, P. R.

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

Smith, N.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6(4), 488–503 (2012).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Soria, S.

Srivastava, R.

T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO(3) waveguides,” Opt. Lett. 18(5), 346–348 (1993).
[Crossref] [PubMed]

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10(9), 1302–1313 (1992).
[Crossref]

Stark, P.

Steier, W. H.

Y. S. Lee, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).
[Crossref]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

Stenger, V.

Suche, H.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

Sun, J.

Tünnermann, A.

Tuschel, D. D.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[Crossref]

Uchida, N.

Ulliac, G.

Venkataraman, V.

Wang, C.

Wang, K.

Wang, L.

Wesch, W.

Wood, M. G.

Xu, C.

Yip, G. L.

Zhang, S.

Zhao, J. H.

Zhu, Z.

Appl. Opt. (3)

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (4)

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

K. Diest, M. J. Archer, J. A. Dionne, Y.-B. Park, M. J. Czubakowski, and H. A. Atwater, “Silver diffusion bonding and layer transfer of lithium niobate to silicon,” Appl. Phys. Lett. 93(9), 092906 (2008).
[Crossref]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

IEICE Trans. Electron. (1)

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

J. Appl. Phys. (2)

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[Crossref]

Yu. N. Korkishko and V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides,” J. Appl. Phys. 82(3), 1010–1017 (1997).
[Crossref]

J. Lightwave Technol. (2)

L. Wang, J. H. Zhao, and G. Fu, “Ridge LiNbO3 waveguide fabricated by a novel wet etching/MeV oxygen ion implantation method,” J. Lightwave Technol. 28(9), 1344–1348 (2010).
[Crossref]

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10(9), 1302–1313 (1992).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Ito and K. Kawamoto, “Relationship between propagation loss and crystallinity in proton-exchanged and annealed LiNbO3 optical waveguides,” Jpn. J. Appl. Phys. 37(7), 3977–3982 (1998).
[Crossref]

Laser Photon. Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6(4), 488–503 (2012).
[Crossref]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Opt. Express (10)

G. Nunzi Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19(4), 3651–3656 (2011).
[Crossref] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
[Crossref] [PubMed]

J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006).
[Crossref] [PubMed]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood., “Helium-ion-induced radiation damage in LiNbO₃ thin-film electro-optic modulators,” Opt. Express 22(16), 19653–19661 (2014).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, and M.-P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
[Crossref] [PubMed]

Opt. Lett. (8)

L. Cai, H. Han, S. Zhang, H. Hu, and K. Wang, “Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator,” Opt. Lett. 39(7), 2094–2096 (2014).
[Crossref] [PubMed]

F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009).
[Crossref] [PubMed]

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
[Crossref] [PubMed]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
[Crossref] [PubMed]

J. Sun and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO: LiNbO3 ridge waveguides,” Opt. Lett. 37(11), 2028–2030 (2012).
[Crossref] [PubMed]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO(3) waveguides,” Opt. Lett. 16(23), 1844–1846 (1991).
[Crossref] [PubMed]

T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO(3) waveguides,” Opt. Lett. 18(5), 346–348 (1993).
[Crossref] [PubMed]

M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21(11), 794–796 (1996).
[Crossref] [PubMed]

Thin Solid Films (1)

Y. S. Lee, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).
[Crossref]

Other (2)

R. Wang and S. A. Bhave, “Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators,” http://arxiv.org/abs/1409.6351 (2014).

Lumerical Solutions, http://www.lumerical.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Top: single mode and fundamental mode cut-off conditions for the PE waveguide with ∆ne = 0.09 simulated at the wavelength of 1550 nm. The cut-off thickness (0.2 μm) was the minimum LN film thickness above which the fundamental quasi-TM mode of the planar waveguide was supported. Inset: near-field intensity distributions of the fundamental mode and the first higher order mode in the PE channel waveguides with the corresponding dimension labeled as a, b on the curves.
Fig. 2
Fig. 2 Relationship between the calculated mode size and width of the PE region, using film thickness as the parameter (∆ne = 0.09). Inset: A mode size as small as 0.6 μm2 was obtained with a 0.6 μm thick film and a 0.8 μm wide PE region.
Fig. 3
Fig. 3 Schematic diagram of the LNOI cross section. h1, h2 and h3 were 500 nm, 2 μm and 0.5 mm, respectively.
Fig. 4
Fig. 4 X-ray diffraction (XRD) spectra from LN (006) reflection before (black line) and after (red line) PE. The PE process introduced a new phase β4 at 39.1°.
Fig. 5
Fig. 5 Optical microscope image (top view) of a 7 μm wide PE channel waveguide.
Fig. 6
Fig. 6 Measured near-field intensity distributions of the fundamental quasi-TM modes, guided in the (a) 5, (b) 7 and (c) 11 μm wide channel waveguides at 1.55 μm. The corresponding simulated waveguides are shown in (d), (e) and (f). Mode sizes of 3.3 μm2, 5 μm2 and 7 μm2 were obtained by measurement and mode sizes of 1.4 μm2, 1.8 μm2 and 2.7 μm2 were obtained by simulation.
Fig. 7
Fig. 7 Normalized transmission of quasi-TM polarized light in the (a) 5, (b) 7 and (c) 11 μm PE channel waveguides in LNOI as a function of wavelength. Propagation losses were evaluated to be 16, 12 and 11 dB/cm, respectively.

Tables (1)

Tables Icon

Table 1 Effective refractive indices of guiding modes in LNOI before and after PE at a 633 nm wavelength

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α= 4.34 L (lnRln R ˜ ) where R ˜ = 1 K (1 1 K 2 ) and K= I max I min I max + I min

Metrics