Abstract

Advanced modulation formats combined with digital signal processing and direct detection is a promising way to realize high capacity, low cost and power efficient short reach optical transmission system. In this paper, we present a detailed investigation on the performance of three advanced modulation formats for 100 Gb/s short reach transmission system. They are PAM-4, CAP-16 and DMT. The detailed digital signal processing required for each modulation format is presented. Comprehensive simulations are carried out to evaluate the performance of each modulation format in terms of received optical power, transmitter bandwidth, relative intensity noise and thermal noise. The performance of each modulation format is also experimentally studied. To the best of our knowledge, we report the first demonstration of a 112 Gb/s transmission over 10km of SSMF employing single band CAP-16 with EML. Finally, a comparison of computational complexity of DSP for the three formats is presented.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of 100G PAM-8, CAP-64 and DFT-S OFDM with a bandwidth-limited direct-detection receiver

Jianyang Shi, Junwen Zhang, Nan Chi, and Jianjun Yu
Opt. Express 25(26) 32254-32262 (2017)

Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm

Mathieu Chagnon, Mohamed Osman, Michel Poulin, Christine Latrasse, Jean-Frédéric Gagné, Yves Painchaud, Carl Paquet, Stéphane Lessard, and David Plant
Opt. Express 22(17) 21018-21036 (2014)

Transmitter and receiver DSP for 112 Gbit/s PAM-4 amplifier-less transmissions using 25G-class EML and APD

Jiahao Huo, Xian Zhou, Kang Ping Zhong, Jiajing Tu, Jinhui Yuan, Changjian Guo, Keping Long, Changyuan Yu, Alan Pak Tao Lau, and Chao Lu
Opt. Express 26(18) 22673-22686 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J.-Y. Dupuy, and Y.-K. Chen, “Serial 103.125-Gb/s transmission over 1 km SSMF for low-cost, short-reach optical interconnects,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), paper Th5A.5.
    [Crossref]
  2. R. Rodes, J. Estaran, B. Li, M. Muller, J. B. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M. C. Amann, and I. T. Monroy, “100 Gb/s single VCSEL data transmission link,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2012), paper PDP5D.10.
    [Crossref]
  3. M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J. F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22(17), 21018–21036 (2014).
    [Crossref] [PubMed]
  4. K. P. Zhong, W. Chen, Q. Sui, M. J. Wei, A. P. K. Lau, C. Lu, and L. Zeng, “Low cost 400GE transceiver for 2km optical interconnect using PAM4 and direct detection,” in Asia Communications and Photonics Conference (ACP) (2014), paper, ATh4D.2.
    [Crossref]
  5. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
    [Crossref] [PubMed]
  6. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 System With DD-LMS Equalizer for Short Reach Optical Transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
    [Crossref]
  7. L. Tao, Y. Wang, Y. Gao, and N. Chi, “High Order CAP System Using DML for Short Reach Optical Communications,” IEEE Photon. Technol. Lett. 26(13), 1348–1351 (2014).
    [Crossref]
  8. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 (2014).
  9. T. Zuo, A. Tatarczak, M. I. Olmedo, J. Estaran, J. Bevensee Jensen, Q. Zhong, X. Xu, and I. Tafur, “O-band 400 Gbit/s Client Side Optical Transmission Link,” in Optical Fiber Communication Conference,(OFC) (2014), paper M2E.4.
    [Crossref]
  10. Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
    [PubMed]
  11. Y. Bao, Z. Li, J. Li, X. Feng, B. O. Guan, and G. Li, “Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion,” Opt. Express 21(6), 7354–7361 (2013).
    [Crossref] [PubMed]
  12. T. Tanaka, M. Nishihara, T. Takahara, L. Li, Z. Tao, and J. C. Rasmussen, “50 Gbps class transmission in single mode fiber using discrete multi-tone modulation with 10G directly modulated laser,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2012), paper Oth4G.
    [Crossref]
  13. W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 Gsamples/s CMOS DAC core,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2013), paper OM3H.1.
    [Crossref]
  14. T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30km SMF,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), paper M2I. 5.
    [Crossref]
  15. J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Feasibility of 100G ethernet enabled by carrierless amplitude/phase modulation and optical OFDM,” in European Conference and Exhibition on Optical Communications (ECOC) (2012), paper P6.05.
    [Crossref]
  16. Y. Kai, M. Matsuda, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short reach 400Gbps data communication,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), paper Th.1.F.3.
  17. L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
    [Crossref]
  18. M. S. Faruk and K. Kikuchi, “Adaptive frequency-domain equalization in digital coherent optical receivers,” Opt. Express 19(13), 12789–12798 (2011).
    [Crossref] [PubMed]
  19. J. Leibrich and W. Rosenkranz, “Frequency Domain Equalization with Minimum Complexity in Coherent Optical Transmission Systems,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2012), paper OWV1.

2014 (3)

L. Tao, Y. Wang, Y. Gao, and N. Chi, “High Order CAP System Using DML for Short Reach Optical Communications,” IEEE Photon. Technol. Lett. 26(13), 1348–1351 (2014).
[Crossref]

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 (2014).

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J. F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22(17), 21018–21036 (2014).
[Crossref] [PubMed]

2013 (5)

2011 (1)

Bao, Y.

Chagnon, M.

Chi, N.

L. Tao, Y. Wang, Y. Gao, and N. Chi, “High Order CAP System Using DML for Short Reach Optical Communications,” IEEE Photon. Technol. Lett. 26(13), 1348–1351 (2014).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 System With DD-LMS Equalizer for Short Reach Optical Transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

Faruk, M. S.

Feng, X.

Gagné, J. F.

Gao, Y.

L. Tao, Y. Wang, Y. Gao, and N. Chi, “High Order CAP System Using DML for Short Reach Optical Communications,” IEEE Photon. Technol. Lett. 26(13), 1348–1351 (2014).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 System With DD-LMS Equalizer for Short Reach Optical Transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Guan, B. O.

Hu, R.

Jensen, J. B.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 (2014).

Ji, Y.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Jiang, T.

Kikuchi, K.

Latrasse, C.

Lau, A. P. T.

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 System With DD-LMS Equalizer for Short Reach Optical Transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Lessard, S.

Li, C.

Li, G.

Li, H.

Li, J.

Li, Z.

Liu, J.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Lu, C.

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 System With DD-LMS Equalizer for Short Reach Optical Transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

Luo, M.

Monroy, I. T.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 (2014).

Olmedo, M. I.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 (2014).

Osman, M.

Painchaud, Y.

Paquet, C.

Plant, D.

Popov, S.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 (2014).

Poulin, M.

Tao, L.

L. Tao, Y. Wang, Y. Gao, and N. Chi, “High Order CAP System Using DML for Short Reach Optical Communications,” IEEE Photon. Technol. Lett. 26(13), 1348–1351 (2014).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 System With DD-LMS Equalizer for Short Reach Optical Transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Wang, Y.

L. Tao, Y. Wang, Y. Gao, and N. Chi, “High Order CAP System Using DML for Short Reach Optical Communications,” IEEE Photon. Technol. Lett. 26(13), 1348–1351 (2014).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 System With DD-LMS Equalizer for Short Reach Optical Transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

Xiao, X.

Xu, X.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 (2014).

Yang, Q.

Yu, S.

Zhang, X.

Zhong, Q.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 (2014).

Zuo, T.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 (2014).

IEEE Lightwave Technology, Journalism (1)

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 (2014).

IEEE Netw. (1)

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 System With DD-LMS Equalizer for Short Reach Optical Transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, and N. Chi, “High Order CAP System Using DML for Short Reach Optical Communications,” IEEE Photon. Technol. Lett. 26(13), 1348–1351 (2014).
[Crossref]

Opt. Express (5)

Other (10)

J. Leibrich and W. Rosenkranz, “Frequency Domain Equalization with Minimum Complexity in Coherent Optical Transmission Systems,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2012), paper OWV1.

J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J.-Y. Dupuy, and Y.-K. Chen, “Serial 103.125-Gb/s transmission over 1 km SSMF for low-cost, short-reach optical interconnects,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), paper Th5A.5.
[Crossref]

R. Rodes, J. Estaran, B. Li, M. Muller, J. B. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M. C. Amann, and I. T. Monroy, “100 Gb/s single VCSEL data transmission link,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2012), paper PDP5D.10.
[Crossref]

K. P. Zhong, W. Chen, Q. Sui, M. J. Wei, A. P. K. Lau, C. Lu, and L. Zeng, “Low cost 400GE transceiver for 2km optical interconnect using PAM4 and direct detection,” in Asia Communications and Photonics Conference (ACP) (2014), paper, ATh4D.2.
[Crossref]

T. Zuo, A. Tatarczak, M. I. Olmedo, J. Estaran, J. Bevensee Jensen, Q. Zhong, X. Xu, and I. Tafur, “O-band 400 Gbit/s Client Side Optical Transmission Link,” in Optical Fiber Communication Conference,(OFC) (2014), paper M2E.4.
[Crossref]

T. Tanaka, M. Nishihara, T. Takahara, L. Li, Z. Tao, and J. C. Rasmussen, “50 Gbps class transmission in single mode fiber using discrete multi-tone modulation with 10G directly modulated laser,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2012), paper Oth4G.
[Crossref]

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 Gsamples/s CMOS DAC core,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2013), paper OM3H.1.
[Crossref]

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30km SMF,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), paper M2I. 5.
[Crossref]

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Feasibility of 100G ethernet enabled by carrierless amplitude/phase modulation and optical OFDM,” in European Conference and Exhibition on Optical Communications (ECOC) (2012), paper P6.05.
[Crossref]

Y. Kai, M. Matsuda, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short reach 400Gbps data communication,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), paper Th.1.F.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 DSP flow chart for PAM-4 signal at transmitter and receiver sides.
Fig. 2
Fig. 2 DSP flow chart for CAP-16 signal.
Fig. 3
Fig. 3 DSP flow chart for DMT.
Fig. 4
Fig. 4 Simulation setup for 112 Gb/s short reach transmission system. LPF: low pass filter, EML: electric absorption modulated laser, SSMF: standard single mode fiber.
Fig. 5
Fig. 5 Simulation results for (a) BER v. s. Received optical power (b) Receiver sensitivity penalty v. s. TX bandwidth, (c) Receiver sensitivity penalty v. s. RIN, (d) Receiver sensitivity penalty v. s. thermal noise.
Fig. 6
Fig. 6 Experimental setup of short reach transmission system with direct detection. AWG: arbitrary waveform generator, EA: electronic amplifier, EML: electric absorption modulated laser, VOA: variable optical attenuator. DSO: digital sampling oscilloscope.
Fig. 7
Fig. 7 The end-to-end frequency response of the optical channel
Fig. 8
Fig. 8 Experimental results for 112 Gb/s PAM-4 signal. (a) Optical spectrums, (b) BER curves for back-to-back and 10km systems, (c) Eye-diagram of received PAM-4 signal at −5dBm, (d) Probability distribution function of PAM-4 signal after 10km transmission at −5dBm.
Fig. 9
Fig. 9 Experimental results for 112 Gb/s CAP-16 signal. (a) Optical spectrums, (b) Electric spectrum of CAP-16 signal with pre-emphasis and the received signal after PD, (c) BER v. s. Received optical power, (d) Constellations of demodulated CAP-16 signal at −5 dBm.
Fig. 10
Fig. 10 Experimental results for 111.8 Gb/s DMT signal. (a) Bit loading, (b) Optical spectrum, (c) BER v. s. Received optical power.
Fig. 11
Fig. 11 Performance comparison of different modulation formats for (a) back-to-back system, (b) 10 km transmission.

Tables (2)

Tables Icon

Table 1 Common Simulation Parameters

Tables Icon

Table 2 Computational Complexity of Different Formats

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C PAM4 TDE =2N/ log 2 (M)=N
C PAM4 FDE =[2N+5N log 2 (N)]/[N/ 2 log 2 (M)] =[4+10 log 2 (N)]/ log 2 (M)
C CAP16 TDE =(6 N 1 +6 N 2 )/ log 2 (M)= 3( N 1 + N 2 ) /2
C CAP16 FDE =[12 N 1 +24 N 1 log 2 ( N 1 )]/[ N 1 log 2 (M)] +[6 N 2 +12 N 2 log 2 ( N 2 )]/[ N 2 log 2 (M)] =[18+12 log 2 ( N 1 )+12 log 2 ( N 2 )]/ log 2 (M)
C DMT =4N log 2 (N)/ N sc log 2 (M)

Metrics