Abstract

We demonstrate time-bin entanglement generation in telecom wavelength using a 7 μm radius Si micro-ring resonator pumped by a continuous wave laser. The resonator structure can enhance spontaneous four wave mixing, leading to a photon pair generation rate of about 90-100 Hz with a laser pump power of as low as −3.92 dBm (0.41 mW). We succeed in observing time-bin entanglement with the visibility over 92%. Moreover, wavelength-tunability of the entangled photon pair is demonstrated by changing the operation temperature.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator

Mikio Fujiwara, Ryota Wakabayashi, Masahide Sasaki, and Masahiro Takeoka
Opt. Express 25(4) 3445-3453 (2017)

Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator

Jun Chen, Zachary H. Levine, Jingyun Fan, and Alan L. Migdall
Opt. Express 19(2) 1470-1483 (2011)

Generation of 10-GHz clock sequential time-bin entanglement

Qiang Zhang, Carsten Langrock, Hiroki Takesue, Xiuping Xie, Martin Fejer, and Yoshihisa Yamamoto
Opt. Express 16(5) 3293-3298 (2008)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public-key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.
  3. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
    [Crossref] [PubMed]
  4. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
    [Crossref]
  5. A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
    [Crossref] [PubMed]
  6. N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
    [Crossref] [PubMed]
  7. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
    [Crossref] [PubMed]
  8. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
    [Crossref]
  9. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17(19), 16558–16570 (2009).
    [Crossref] [PubMed]
  10. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
    [Crossref] [PubMed]
  11. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20(21), 23100–23107 (2012).
    [Crossref] [PubMed]
  12. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
    [Crossref]
  13. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
    [Crossref] [PubMed]
  14. H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18(16), 16777–16787 (2010).
    [Crossref] [PubMed]
  15. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
    [Crossref]
  16. J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator,” Opt. Express 19(2), 1470–1483 (2011).
    [Crossref] [PubMed]
  17. R. M. Camacho, “Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators,” Opt. Express 20(20), 21977–21991 (2012).
    [Crossref] [PubMed]
  18. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, M. Sorel, J. E. Sipe, and D. Bajoni, “Emisson of time-energy entagled photon pairs from an integrated silicon ring resonator,” Proc. CLEO 2014 FTh1A.3 (2014).
  19. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
    [Crossref] [PubMed]
  20. J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A 44(7), 4552–4555 (1991).
    [Crossref] [PubMed]
  21. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
    [Crossref] [PubMed]
  22. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [Crossref] [PubMed]
  23. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
    [Crossref] [PubMed]
  24. Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
    [Crossref]
  25. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73(2), 022320 (2006).
    [Crossref]
  26. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
    [Crossref]
  27. H. Takesue and B. Miquel, “Entanglement swapping using telecom-band photons generated in fibers,” Opt. Express 17(13), 10748–10756 (2009).
    [Crossref] [PubMed]
  28. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Stain, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” http://arXiv:quant-ph/1410.8332v4 (2014).
  29. L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, “Silicon-on-insulator integrated source of polarization-entangled photons,” Opt. Lett. 38(11), 1960–1962 (2013).
    [PubMed]

2013 (5)

2012 (2)

2011 (2)

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator,” Opt. Express 19(2), 1470–1483 (2011).
[Crossref] [PubMed]

2010 (2)

H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18(16), 16777–16787 (2010).
[Crossref] [PubMed]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
[Crossref]

2007 (1)

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[Crossref]

2006 (2)

2005 (2)

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
[Crossref] [PubMed]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2000 (1)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

1992 (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
[Crossref] [PubMed]

1991 (2)

A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref] [PubMed]

J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A 44(7), 4552–4555 (1991).
[Crossref] [PubMed]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[Crossref] [PubMed]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Azzini, S.

Baets, R.

Baets, R. G.

Bajoni, D.

Bennett, C. H.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
[Crossref] [PubMed]

Bogaerts, W.

Bonneau, D.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Brassard, G.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
[Crossref] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

Camacho, R. M.

Chen, J.

Chen, K.

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
[Crossref] [PubMed]

Clark, A. S.

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Clemmen, S.

Dorenbos, S. N.

Ekert, A. K.

A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref] [PubMed]

Emplit, P.

Emplit, Ph.

Engin, E.

Ezaki, M.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Fan, J.

Fasel, S.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73(2), 022320 (2006).
[Crossref]

Foster, M. A.

Franson, J. D.

J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A 44(7), 4552–4555 (1991).
[Crossref] [PubMed]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[Crossref] [PubMed]

Fukuda, H.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18(16), 16777–16787 (2010).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[Crossref]

Gaeta, A. L.

Galli, M.

Gisin, N.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[Crossref] [PubMed]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73(2), 022320 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

Grassani, D.

Hadfield, R. H.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Harada, K.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18(16), 16777–16787 (2010).
[Crossref] [PubMed]

Helt, L. G.

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Huy, K. P.

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

Itabashi, S.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18(16), 16777–16787 (2010).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[Crossref]

Kraus, B.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73(2), 022320 (2006).
[Crossref]

Kumar, P.

Lee, K. F.

Levine, Z. H.

Lipson, M.

Liscidini, M.

Lo, H.-K.

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
[Crossref] [PubMed]

Ma, X.

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
[Crossref] [PubMed]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

Marshall, G. D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Massar, S.

Matarajan, C. M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
[Crossref] [PubMed]

Migdall, A. L.

Miki, S.

Miquel, B.

Nambu, Y.

Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
[Crossref]

Natarajan, C. M.

O’Brien, J. L.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Ohira, K.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

Olislager, L.

Phan Huy, K.

Pironio, S.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[Crossref] [PubMed]

Qi, B.

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Ribordy, G.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73(2), 022320 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Safioui, J.

Sangouard, N.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[Crossref] [PubMed]

Schmidt, B. S.

Sharping, J. E.

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Sipe, J. E.

Sorel, M.

Strain, M. J.

Suzuki, N.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Takesue, H.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18(16), 16777–16787 (2010).
[Crossref] [PubMed]

H. Takesue and B. Miquel, “Entanglement swapping using telecom-band photons generated in fibers,” Opt. Express 17(13), 10748–10756 (2009).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[Crossref]

Tamaki, K.

Tanner, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

Terai, H.

Thompson, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

Tokura, Y.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[Crossref]

Tomita, A.

Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
[Crossref]

Tsuchizawa, T.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18(16), 16777–16787 (2010).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[Crossref]

Turner, A. C.

Wang, Z.

Watanabe, T.

H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18(16), 16777–16787 (2010).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[Crossref]

Watananabe, T.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

Yamada, K.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18(16), 16777–16787 (2010).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[Crossref]

Yamashita, T.

Yoshida, H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

Yoshino, K.

Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
[Crossref]

Zbinden, H.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73(2), 022320 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

Zhao, Y.

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

Zwiller, V.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Appl. Phys. Lett. (1)

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[Crossref]

J. Mod. Opt. (1)

Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
[Crossref]

Nat. Photonics (1)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Matarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

New J. Phys. (1)

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watananabe, K. Yamada, Y. Tokura, and S. Itabashi, “indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

Opt. Express (10)

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
[Crossref] [PubMed]

J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator,” Opt. Express 19(2), 1470–1483 (2011).
[Crossref] [PubMed]

R. M. Camacho, “Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators,” Opt. Express 20(20), 21977–21991 (2012).
[Crossref] [PubMed]

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17(19), 16558–16570 (2009).
[Crossref] [PubMed]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20(21), 23100–23107 (2012).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express 18(16), 16777–16787 (2010).
[Crossref] [PubMed]

H. Takesue and B. Miquel, “Entanglement swapping using telecom-band photons generated in fibers,” Opt. Express 17(13), 10748–10756 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (3)

J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A 44(7), 4552–4555 (1991).
[Crossref] [PubMed]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73(2), 022320 (2006).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

Phys. Rev. Lett. (7)

A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref] [PubMed]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[Crossref] [PubMed]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
[Crossref] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Other (3)

C. H. Bennett and G. Brassard, “Quantum cryptography: public-key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, M. Sorel, J. E. Sipe, and D. Bajoni, “Emisson of time-energy entagled photon pairs from an integrated silicon ring resonator,” Proc. CLEO 2014 FTh1A.3 (2014).

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Stain, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” http://arXiv:quant-ph/1410.8332v4 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Top view of the Si micro-ring resonator. The thicknesses of the ring and waveguides are 220 nm.

Fig. 2
Fig. 2

Spectra of the Si micro-ring resonator at various operation temperatures (10, 20, and 30 °C).

Fig. 3
Fig. 3

Experimental setup for coincidence count measurement.

Fig. 4
Fig. 4

Coincidence histogram. The pump power is set −3.92 dBm (0.41 mW). The operation temperature of the Si micro-ring resonator is 25 °C.

Fig. 5
Fig. 5

Experimental setup for time-bin entanglement measurement. Inset shows the equivalent optical setup of the PLC.

Fig. 6
Fig. 6

(a) Coincidence histogram in Z-basis. (b) Coincidence counts in X-basis as a function of the operation temperature of the PLC (signal photon side). The time window for one data point is set 64 ps. The operation temperature of the Si micro-ring resonator is 25 °C. The input power and wavelength of the pump laser are −3.37 dBm (0.46 mW) and 1551.63 nm. The central peaks of the bandpass filters are set 1539.01 and 1564.43 nm.

Fig. 7
Fig. 7

Coincidence counts in X-basis as a function of the operation temperature of the PLC (signal photon side) at various operation temperature of the micro-ring. The input power of the pump laser is −3.37 dBm (0.46 mW). (a) Operation temperature is 20 °C. The wavelength of a pump laser is 1551.27 nm. Central peaks of band pass filters are 1564.05 and 1538.72 nm. (b) Operation temperature is 10 °C. The wavelength of pump laser is 1550.59 nm. Central peaks of bandpass filters are 1563.39 and 1538.04 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 2 { a ^ (t) b ^ (t)+ e iθ a ^ (t+τ) b ^ (t+τ) }| 0 a , 0 b ,
|0 Z a ^ (t)|0, |1 Z a ^ (t+τ)|0,
|0 X 1 2 [ a ^ (t)+ e iθ a ^ (tτ) ]|0, |1 X 1 2 [ a ^ (t) e iθ a ^ (tτ) ]|0.
|Ψ source = U ^ S U ^ I 1 2 [ e iθ(tτ) a ^ (tτ) b ^ (tτ)+ e iθ(t) a ^ (t) b ^ (t) ]| 0000 s | 0000 i = e iθ(tτ) 4 2 { 1 2 [ a ^ (tτ)+ e i θ 1 a ^ (t) ] X0 + 1 2 [ a ^ (tτ) e i θ 1 a ^ (t) ] X1 + a ^ (tτ) Z0 + a ^ (t) Z1 }| 0000 s { 1 2 [ b ^ (tτ)+ e i θ 2 b ^ (t) ] X'0 + 1 2 [ b ^ (tτ) e i θ 2 b ^ (t) ] X'1 + b ^ (tτ) Z'0 + b ^ (t) Z'1 }| 0000 i + e iθ(t) 4 2 { 1 2 [ a ^ (t)+ e i θ 1 a ^ (t+τ) ] X0 + 1 2 [ a ^ (t) e i θ 1 a ^ (t+τ) ] X1 + a ^ (t) Z0 + a ^ (t+τ) Z1 }| 0000 s   { 1 2 [ b ^ (t)+ e i θ 2 b ^ (t+τ) ] X'0 + 1 2 [ b ^ (t) e i θ 2 b ^ (t+τ) ] X'1 + b ^ (t) Z'0 + b ^ (t+τ) Z'1 }| 0000 i ,
|ψ final(X-basis) = 1 2 2 [ ( 1+ e i( θ 1 + θ 2 +θ(tτ)θ(t)) ) a ^ (t) X0 b ^ (t) X 0 +( 1+ e i( θ 1 + θ 2 +θ(tτ)θ(t)) ) a ^ (t) X1 b ^ (t) X 1 +( 1 e i( θ 1 + θ 2 +θ(tτ)θ(t)) ) a ^ (t) X0 b ^ (t) X 1   +( 1 e i( θ 1 + θ 2 +θ(tτ)θ(t)) ) a ^ (t) X1 b ^ (t) X 0 ]| 00 s | 00 i ,
|ψ final(X-basis) = 1 2 ( a ^ (t) X0 b ^ (t) X 0 + a ^ (t) X1 b ^ (t) X 1 )| 00 s | 00 i
|ψ final(X-basis) = 1 2 ( a ^ (t) X0 b ^ (t) X 1 + a ^ (t) X1 b ^ (t) X 0 )| 00 s | 00 i
|ψ final(Z-basis) = 1 2 ( a ^ (t) Z0 b ^ (t) Z 0 + e i(θ(tτ)θ(t)) a ^ (t) Z1 b ^ (t) Z 1 )| 00 s | 00 i ,

Metrics