Abstract

A unique, hierarchically structured, aggregated TiO2 nanowire (A-TiO2-nw) is prepared by solvothermal synthesis and used as a dual-functioning photoelectrode in dye-sensitized solar cells (DSSCs). The A-TiO2-nw shows improved light scattering compared to conventional TiO2 nanoparticles (TiO2-np) and dramatically enhanced dye adsorption compared to conventional scattering particles (CSP). The A-TiO2-nw is used as a scattering layer for bilayer photoelectrodes (TiO2-np/A-TiO2-nw) in DSSCs to compare the cell performance to that of devices using state-of-the-art photoelectrode architectures (TiO2-np/CSP). The DSSCs fabricated using bilayers of TiO2-np/A-TiO2-nw show improved power conversion efficiency (9.1%) and current density (14.88 mA cm−2) compared to those using single-layer TiO2-np (7.6% and 11.84 mA cm−2) or TiO2-np/CSP bilayer structures (8.7% and 13.81 mA cm−2). The unique contribution of the A-TiO2-nw layers to the device performance is confirmed by studying the incident photon-to-current efficiency. The enhanced external quantum efficiencies at approximately 520 nm and 650 nm clearly reveal the dual functionality of A-TiO2-nw. These unique properties of A-TiO2-nw may be applied in other devices utilizing light-scattering n-type semiconductor.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes

Da-Wei Liu, I-Chun Cheng, Jian Z. Chen, Hsin-Wei Chen, Kuo-Chuan Ho, and Chin-Cheng Chiang
Opt. Express 20(S2) A168-A176 (2012)

Double-layered TiO2 photoelectrode with particulate structure prepared by one-step soaking method

Mi Sun Park, Sang-Ju Lee, Shi-Joon Sung, and Dae-Hwan Kim
Opt. Mater. Express 4(11) 2401-2408 (2014)

Enhanced power conversion efficiency of quantum dot sensitized solar cells with near single-crystalline TiO2 nanohelixes used as photoanodes

Seung Hee Lee, Ho Jin, Dong-Yeong Kim, Kyung Song, Sang Ho Oh, Sungjee Kim, E. Fred Schubert, and Jong Kyu Kim
Opt. Express 22(S3) A867-A879 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
    [Crossref] [PubMed]
  2. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
    [Crossref] [PubMed]
  3. M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev. 4(2), 145–153 (2003).
    [Crossref]
  4. J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
    [Crossref] [PubMed]
  5. S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun. 2005(15), 2011–2013 (2005).
    [Crossref] [PubMed]
  6. F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
    [Crossref]
  7. F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater. 20(8), 1301–1305 (2010).
    [Crossref]
  8. X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
    [Crossref]
  9. K. Fan, W. Zhang, T. Peng, J. Chen, and F. Yang, “Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency,” J. Phys. Chem. C 115(34), 17213–17219 (2011).
    [Crossref]
  10. D. Kim, A. Ghicov, S. P. Albu, and P. Schmuki, “Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells,” J. Am. Chem. Soc. 130(49), 16454–16455 (2008).
    [Crossref] [PubMed]
  11. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
    [Crossref] [PubMed]
  12. O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett. 9(3), 930–934 (2009).
    [Crossref] [PubMed]
  13. N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
    [Crossref]
  14. G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
    [Crossref]
  15. D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
    [Crossref] [PubMed]

2014 (1)

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
[Crossref] [PubMed]

2012 (3)

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

2011 (3)

K. Fan, W. Zhang, T. Peng, J. Chen, and F. Yang, “Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency,” J. Phys. Chem. C 115(34), 17213–17219 (2011).
[Crossref]

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

2010 (1)

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater. 20(8), 1301–1305 (2010).
[Crossref]

2009 (1)

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett. 9(3), 930–934 (2009).
[Crossref] [PubMed]

2008 (2)

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

D. Kim, A. Ghicov, S. P. Albu, and P. Schmuki, “Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells,” J. Am. Chem. Soc. 130(49), 16454–16455 (2008).
[Crossref] [PubMed]

2007 (1)

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

2005 (1)

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun. 2005(15), 2011–2013 (2005).
[Crossref] [PubMed]

2003 (1)

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev. 4(2), 145–153 (2003).
[Crossref]

2000 (1)

N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
[Crossref]

Albu, S. P.

D. Kim, A. Ghicov, S. P. Albu, and P. Schmuki, “Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells,” J. Am. Chem. Soc. 130(49), 16454–16455 (2008).
[Crossref] [PubMed]

Algra, R. E.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett. 9(3), 930–934 (2009).
[Crossref] [PubMed]

Bakkers, E. P. A. M.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett. 9(3), 930–934 (2009).
[Crossref] [PubMed]

Bao, C.

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

Belcher, A. M.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

Caruso, R. A.

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater. 20(8), 1301–1305 (2010).
[Crossref]

Chandiran, A. K.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Chen, B.

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

Chen, D.

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater. 20(8), 1301–1305 (2010).
[Crossref]

Chen, J.

K. Fan, W. Zhang, T. Peng, J. Chen, and F. Yang, “Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency,” J. Phys. Chem. C 115(34), 17213–17219 (2011).
[Crossref]

Cheng, Y.-B.

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater. 20(8), 1301–1305 (2010).
[Crossref]

Chiron, J.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
[Crossref] [PubMed]

Clifford, J. N.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
[Crossref] [PubMed]

Dang, X.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

De Angelis, F.

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

Demadrille, R.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
[Crossref] [PubMed]

Diau, E. W.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Diedenhofen, S. L.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett. 9(3), 930–934 (2009).
[Crossref] [PubMed]

Fan, K.

K. Fan, W. Zhang, T. Peng, J. Chen, and F. Yang, “Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency,” J. Phys. Chem. C 115(34), 17213–17219 (2011).
[Crossref]

Frank, A. J.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
[Crossref]

Gálvez, F. E.

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Ghicov, A.

D. Kim, A. Ghicov, S. P. Albu, and P. Schmuki, “Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells,” J. Am. Chem. Soc. 130(49), 16454–16455 (2008).
[Crossref] [PubMed]

Gómez Rivas, J.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett. 9(3), 930–934 (2009).
[Crossref] [PubMed]

Grätzel, M.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev. 4(2), 145–153 (2003).
[Crossref]

Guan, J.

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

Hagberg, D. P.

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

Hagfeldt, A.

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

Halme, J.

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Hammond, P. T.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

Hore, S.

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun. 2005(15), 2011–2013 (2005).
[Crossref] [PubMed]

Huang, F.

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater. 20(8), 1301–1305 (2010).
[Crossref]

Huang, H.

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

Huang, N.

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

Humphry-Baker, R.

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

Joly, D.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
[Crossref] [PubMed]

Kaas, B. C.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett. 9(3), 930–934 (2009).
[Crossref] [PubMed]

Karlsson, K. M.

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

Kemppainen, E.

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Kern, R.

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun. 2005(15), 2011–2013 (2005).
[Crossref] [PubMed]

Kim, D.

D. Kim, A. Ghicov, S. P. Albu, and P. Schmuki, “Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells,” J. Am. Chem. Soc. 130(49), 16454–16455 (2008).
[Crossref] [PubMed]

Lagendijk, A.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett. 9(3), 930–934 (2009).
[Crossref] [PubMed]

Lee, H.

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

Lee, H. W.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Liu, Y.

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

Marinado, T.

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

Miedaner, A.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

Míguez, H.

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Muskens, O. L.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett. 9(3), 930–934 (2009).
[Crossref] [PubMed]

Narbey, S.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
[Crossref] [PubMed]

Nazeeruddin, M. K.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

Neale, N. R.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

Niggemann, M.

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun. 2005(15), 2011–2013 (2005).
[Crossref] [PubMed]

Nitz, P.

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun. 2005(15), 2011–2013 (2005).
[Crossref] [PubMed]

Oswald, F.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
[Crossref] [PubMed]

Palomares, E.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
[Crossref] [PubMed]

Park, N.-G.

N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
[Crossref]

Pellejà, L.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
[Crossref] [PubMed]

Peng, T.

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

K. Fan, W. Zhang, T. Peng, J. Chen, and F. Yang, “Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency,” J. Phys. Chem. C 115(34), 17213–17219 (2011).
[Crossref]

Prahl, C.

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun. 2005(15), 2011–2013 (2005).
[Crossref] [PubMed]

Qi, J.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

Schmuki, P.

D. Kim, A. Ghicov, S. P. Albu, and P. Schmuki, “Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells,” J. Am. Chem. Soc. 130(49), 16454–16455 (2008).
[Crossref] [PubMed]

Sun, L.

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

Sun, X.

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

Tai, Q.

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

Tang, Z.

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

Tsao, H. N.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

van de Lagemaat, J.

N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
[Crossref]

Vetter, C.

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun. 2005(15), 2011–2013 (2005).
[Crossref] [PubMed]

Xu, S.

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

Xue, G.

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

Yang, F.

K. Fan, W. Zhang, T. Peng, J. Chen, and F. Yang, “Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency,” J. Phys. Chem. C 115(34), 17213–17219 (2011).
[Crossref]

Yeh, C. Y.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Yella, A.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Yi, C.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Yu, T.

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

Yu, X.

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

Yum, J.-H.

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

Zakeeruddin, S. M.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Zhang, J.

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

Zhang, W.

K. Fan, W. Zhang, T. Peng, J. Chen, and F. Yang, “Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency,” J. Phys. Chem. C 115(34), 17213–17219 (2011).
[Crossref]

Zhang, X. L.

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater. 20(8), 1301–1305 (2010).
[Crossref]

Zhao, X.-Z.

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

Zhu, K.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

Zou, Z.

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

ACS Nano (1)

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater. 20(8), 1301–1305 (2010).
[Crossref]

Chem. Commun. (1)

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun. 2005(15), 2011–2013 (2005).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, “Molecular engineering of organic sensitizers for dye-sensitized solar cell applications,” J. Am. Chem. Soc. 130(19), 6259–6266 (2008).
[Crossref] [PubMed]

D. Kim, A. Ghicov, S. P. Albu, and P. Schmuki, “Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells,” J. Am. Chem. Soc. 130(49), 16454–16455 (2008).
[Crossref] [PubMed]

J. Photochem. Photobiol. Photochem. Rev. (1)

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev. 4(2), 145–153 (2003).
[Crossref]

J. Phys. Chem. B (1)

N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
[Crossref]

J. Phys. Chem. C (3)

X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, and X.-Z. Zhao, “High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability,” J. Phys. Chem. C 116(22), 11859–11866 (2012).
[Crossref]

K. Fan, W. Zhang, T. Peng, J. Chen, and F. Yang, “Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency,” J. Phys. Chem. C 115(34), 17213–17219 (2011).
[Crossref]

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, H. Huang, Z. Tang, and Z. Zou, “Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum,” J. Phys. D Appl. Phys. 45(42), 425104 (2012).
[Crossref]

Nano Lett. (2)

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett. 9(3), 930–934 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares, and R. Demadrille, “A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability,” Sci. Rep. 4, 4033 (2014).
[Crossref] [PubMed]

Science (1)

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Scheme of synthesis route of TiO2 nanowires. SEM images of nanowires (b) after drying and (c) after annealing process. (d) XRD pattern of TiO2 nanowires (*might come from the trace impurity of brookite). Inset: TEM image.
Fig. 2
Fig. 2 (a) The architecture of the four types of photoelectrodes used in this study (b) reflectance data of various photoelectrodes used in this experiment (c) current density-voltage (J-V) characteristics and (d) incident photon-to-current efficiency (IPCE) results of DSSCs fabricated using various types of photoelectrodes. The layer thickness of the bottom TiO2-np layer was 11 μm.
Fig. 3
Fig. 3 (a) SEM image of CSP nanoparticles, (b) absorption spectrum of N719 dye.
Fig. 4
Fig. 4 Current density-voltage (J-V) characteristics of DSSCs fabricated using various types of photoelectrodes. The layer thickness of the bottom TiO2-np layer was 5 μm.

Tables (2)

Tables Icon

Table 1 Summary of J-V analysis results in Fig. 2(c) and dye uptake of the four types of photoelectrodes.

Tables Icon

Table 2 Summary of J-V results in Fig. 4.

Metrics