Abstract

We describe a bispectral, 1000-frames per second imaging instrument working simultaneously in two spectral bands. These bands may be selected for a specific application; however, we implement a pair centered at 4.3 μm and 4.66 μm. Synchronization is accomplished by employing a single focal plane array. To demonstrate the performance of the bispectral imager, we apply it to the methane flame of a Bunsen burner in a near conjugate configuration with flame image length subtending at about 200 pixels. The instrument detects bispectral puffing at 2 Hz, pulsations, and bispectral radiation oscillations, first reported here in two spectral intervals. The period of oscillatory spectral components in two bands is the same, about 3 Hz for this flame, with delay of a quarter period between them, first reported here. With 1-ms integration time, we detect significant formation of turbulence and vortices, especially pronounced in the region where the flame transitions into a plume. We display bispectral ratioed images of flames in near-real time with either the laboratory or the field device.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values

Michael R. Rhoby, David L. Blunck, and Kevin C. Gross
Opt. Express 22(18) 21600-21617 (2014)

High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system

Kathyayini Sivasubramanian and Manojit Pramanik
Biomed. Opt. Express 7(2) 312-323 (2016)

260 frames-per-second 648x488 resolution division-of-focal-plane polarimeter with structural dynamics and tracking applications

Timothy York, Radoslav Marinov, and Viktor Gruev
Opt. Express 24(8) 8243-8252 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53(4), 260–264 (1991).
    [Crossref]
  2. H. Jiang, Y. Qian, and K. T. Rhee, “High-speed dual-spectra infrared imaging,” Optim. Eng. 32(6), 1281–1289 (1993).
    [Crossref]
  3. P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54(4), 1417–1421 (2005).
    [Crossref]
  4. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
    [Crossref] [PubMed]
  5. P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
    [Crossref]
  6. B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2012).
    [Crossref]
  7. J. L. Harley, B. A. Rankin, D. L. Blunck, J. P. Gore, and K. C. Gross, “Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame,” Opt. Lett. 39(8), 2350–2353 (2014).
    [Crossref] [PubMed]
  8. M. Strojnik, G. Paez, and M. K. Scholl, “Combustion initiation and evolution during the first 400 msec in a gas burner at 10 μm,” Infrared Phys. Technol. 61, 42–49 (2013).
    [Crossref]
  9. D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Inst. 32(2), 2527–2534 (2009).
    [Crossref]
  10. K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Inst. 31(2), 2581–2588 (2007).
    [Crossref]
  11. T. Werblinski, S. R. Engel, R. Engelbrecht, L. Zigan, and S. Will, “Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications,” Opt. Express 21(11), 13656–13667 (2013).
    [Crossref] [PubMed]
  12. S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
    [Crossref]
  13. M. P. Arroyo and R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32(30), 6104–6116 (1993).
    [Crossref] [PubMed]
  14. L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt. 47(21), 3751–3759 (2008).
    [Crossref] [PubMed]
  15. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44(31), 6729–6740 (2005).
    [Crossref] [PubMed]
  16. X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Optimized wavelength selection for molecular absorption thermometry,” Appl. Spectrosc. 69(4), 464–472 (2015).
    [Crossref] [PubMed]
  17. L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt. 46(19), 4117–4124 (2007).
    [Crossref] [PubMed]
  18. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
    [Crossref]
  19. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
    [Crossref]
  20. S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transf. 112(9), 1403–1410 (2011).
    [Crossref]
  21. S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 14–25 (2012).
    [Crossref]
  22. S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 1–13 (2012).
    [Crossref]
  23. P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P.-L. Chien, R. J. Santoro, and H. G. Semerjian, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Inst. 21(1), 1763–1771 (1988).
    [Crossref]
  24. P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85(3–4), 309–318 (1991).
    [Crossref]
  25. M. R. Rhoby, D. L. Blunck, and K. C. Gross, “Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values,” Opt. Express 22(18), 21600–21617 (2014).
    [Crossref] [PubMed]
  26. H. M. Hertz, “Experimental-determination of 2-D flame temperature-fields by interferometric tomography,” Opt. Commun. 54(3), 131–136 (1985).
    [Crossref]
  27. K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt. 34(24), 5492–5500 (1995).
    [Crossref] [PubMed]
  28. P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44(31), 6578–6592 (2005).
    [Crossref] [PubMed]
  29. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17(10), 8602–8613 (2009).
    [Crossref] [PubMed]
  30. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
    [Crossref] [PubMed]
  31. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
    [Crossref] [PubMed]
  32. T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett. 33(7), 738–740 (2008).
    [Crossref] [PubMed]
  33. J. H. Kim, M.-K. Chen, C.-E. Yang, J. Lee, K. Shi, Z. Liu, S. S. Yin, K. Reichard, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber,” Opt. Express 16(19), 14792–14800 (2008).
    [Crossref] [PubMed]
  34. Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express 18(22), 22762–22771 (2010).
    [Crossref] [PubMed]
  35. J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51(7), 834–840 (2012).
    [Crossref] [PubMed]
  36. W. R. Ashby, “Principles of the self-organizing system,” in Principles of Self-Organization: Transactions of the University of Illinois Symposium, H. Von Foerster and G. W. Zopf, Pergamon Press (United Kingdom, 1962).
  37. M. Strojnik and G. Paez, “Radiometry,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, Marcel Dekker (New York, 2001).
  38. J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(3-5), 219–222 (2002).
    [Crossref]
  39. M. Strojnik and G. Paez, “Spectral dependence of absorption sensitivity on concentration of oxygenated hemoglobin: pulse oximetry implications,” J. Biomed. Opt. 18(10), 108001 (2013).
    [Crossref] [PubMed]
  40. M. Strojnik and G. Paez, “Optical system for bispectral Imaging in mid-IR at 1000 frames per second,” Adv. Opt. Technol. 2013, 905870 (2013).
  41. M. S. Scholl and J. W. Scholl, “Time and position varying infrared scene simulation,” in Infrared Technology XIII, Proc. SPIE 819, 297–301 (1987).
    [Crossref]
  42. J. W. Scholl and M. S. Scholl, “Measurement of small temperature fluctuations at high average temperature,” in Infrared Technology XIV, Proc. SPIE 972, 409–415 (1988).
    [Crossref]

2015 (1)

2014 (2)

2013 (4)

T. Werblinski, S. R. Engel, R. Engelbrecht, L. Zigan, and S. Will, “Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications,” Opt. Express 21(11), 13656–13667 (2013).
[Crossref] [PubMed]

M. Strojnik, G. Paez, and M. K. Scholl, “Combustion initiation and evolution during the first 400 msec in a gas burner at 10 μm,” Infrared Phys. Technol. 61, 42–49 (2013).
[Crossref]

M. Strojnik and G. Paez, “Spectral dependence of absorption sensitivity on concentration of oxygenated hemoglobin: pulse oximetry implications,” J. Biomed. Opt. 18(10), 108001 (2013).
[Crossref] [PubMed]

M. Strojnik and G. Paez, “Optical system for bispectral Imaging in mid-IR at 1000 frames per second,” Adv. Opt. Technol. 2013, 905870 (2013).

2012 (4)

J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51(7), 834–840 (2012).
[Crossref] [PubMed]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 14–25 (2012).
[Crossref]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 1–13 (2012).
[Crossref]

B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2012).
[Crossref]

2011 (1)

S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transf. 112(9), 1403–1410 (2011).
[Crossref]

2010 (3)

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express 18(22), 22762–22771 (2010).
[Crossref] [PubMed]

2009 (2)

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17(10), 8602–8613 (2009).
[Crossref] [PubMed]

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Inst. 32(2), 2527–2534 (2009).
[Crossref]

2008 (5)

2007 (4)

2005 (3)

2002 (1)

J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(3-5), 219–222 (2002).
[Crossref]

1998 (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

1995 (1)

1993 (2)

1991 (2)

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53(4), 260–264 (1991).
[Crossref]

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85(3–4), 309–318 (1991).
[Crossref]

1988 (2)

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P.-L. Chien, R. J. Santoro, and H. G. Semerjian, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Inst. 21(1), 1763–1771 (1988).
[Crossref]

J. W. Scholl and M. S. Scholl, “Measurement of small temperature fluctuations at high average temperature,” in Infrared Technology XIV, Proc. SPIE 972, 409–415 (1988).
[Crossref]

1987 (1)

M. S. Scholl and J. W. Scholl, “Time and position varying infrared scene simulation,” in Infrared Technology XIII, Proc. SPIE 819, 297–301 (1987).
[Crossref]

1985 (1)

H. M. Hertz, “Experimental-determination of 2-D flame temperature-fields by interferometric tomography,” Opt. Commun. 54(3), 131–136 (1985).
[Crossref]

An, X.

Anderson, T. N.

Andersson-Engels, S.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53(4), 260–264 (1991).
[Crossref]

Arroyo, M. P.

Barber, R. J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Basu, S.

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Inst. 32(2), 2527–2534 (2009).
[Crossref]

Best, P. E.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85(3–4), 309–318 (1991).
[Crossref]

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P.-L. Chien, R. J. Santoro, and H. G. Semerjian, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Inst. 21(1), 1763–1771 (1988).
[Crossref]

Biswas, K.

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Inst. 31(2), 2581–2588 (2007).
[Crossref]

Blunck, D.

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Inst. 32(2), 2527–2534 (2009).
[Crossref]

Blunck, D. L.

Brantley, C.

Brisley, P. M.

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54(4), 1417–1421 (2005).
[Crossref]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Cai, W.

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Carangelo, R. M.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85(3–4), 309–318 (1991).
[Crossref]

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P.-L. Chien, R. J. Santoro, and H. G. Semerjian, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Inst. 21(1), 1763–1771 (1988).
[Crossref]

Carey, S. J.

Castrellon, J.

J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(3-5), 219–222 (2002).
[Crossref]

Caswell, A. W.

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Chen, M.-K.

Chien, P. L.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85(3–4), 309–318 (1991).
[Crossref]

Chien, P.-L.

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P.-L. Chien, R. J. Santoro, and H. G. Semerjian, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Inst. 21(1), 1763–1771 (1988).
[Crossref]

Chung, K. B.

Colbourne, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Colbourne, S. M.

Cornwell, S.

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54(4), 1417–1421 (2005).
[Crossref]

Crossley, S. D.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Dagel, D.

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Danchak, M.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85(3–4), 309–318 (1991).
[Crossref]

Davidson, J. L.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Depraz, S.

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 14–25 (2012).
[Crossref]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 1–13 (2012).
[Crossref]

Dothe, H.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Edwards, E.

Engel, S. R.

Engelbrecht, R.

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Fujimoto, J. G.

Gamache, R. R.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Garcia-Castillo, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Garcia-Stewart, C.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Garcia-Stewart, C. A.

Geng, J.

Goldman, A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Gord, J. R.

Gordon, I. E.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Gore, J.

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Inst. 32(2), 2527–2534 (2009).
[Crossref]

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Inst. 31(2), 2581–2588 (2007).
[Crossref]

Gore, J. P.

J. L. Harley, B. A. Rankin, D. L. Blunck, J. P. Gore, and K. C. Gross, “Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame,” Opt. Lett. 39(8), 2350–2353 (2014).
[Crossref] [PubMed]

B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2012).
[Crossref]

Gouldin, F. C.

Gross, K. C.

Hanson, R. K.

Harley, J. L.

Herold, R. E.

Hertz, H. M.

H. M. Hertz, “Experimental-determination of 2-D flame temperature-fields by interferometric tomography,” Opt. Commun. 54(3), 131–136 (1985).
[Crossref]

Hindle, F. P.

Huber, R.

Hult, J.

Hurr, W. J.

Ilovici, I.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85(3–4), 309–318 (1991).
[Crossref]

Jiang, H.

H. Jiang, Y. Qian, and K. T. Rhee, “High-speed dual-spectra infrared imaging,” Optim. Eng. 32(6), 1281–1289 (1993).
[Crossref]

Jiang, S.

Jones, R. L.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Kaminski, C. F.

Katta, V.

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Inst. 32(2), 2527–2534 (2009).
[Crossref]

Katta, V. R.

Kauranen, P.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53(4), 260–264 (1991).
[Crossref]

Kim, C. H.

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Inst. 31(2), 2581–2588 (2007).
[Crossref]

Kim, J. H.

Kinnius, P. J.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[Crossref]

Kozlov, D.

Kraetschmer, T.

Kranendonk, L. A.

Langridge, J. M.

Laurila, T.

Lee, J.

Leipertz, A.

Lipor, J. J.

Litt, T.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Litt, T. J.

Liu, Z.

Lu, G.

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54(4), 1417–1421 (2005).
[Crossref]

Lucht, R. P.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[Crossref]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44(31), 6729–6740 (2005).
[Crossref] [PubMed]

Luo, C.

Ma, L.

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Markham, J. R.

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P.-L. Chien, R. J. Santoro, and H. G. Semerjian, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Inst. 21(1), 1763–1771 (1988).
[Crossref]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Mccann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

McCann, H.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Meyer, T. R.

Miller, J. D.

Murray, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Murray, S. C.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Okura, Y.

Ozanyan, K. B.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Paez, G.

M. Strojnik and G. Paez, “Spectral dependence of absorption sensitivity on concentration of oxygenated hemoglobin: pulse oximetry implications,” J. Biomed. Opt. 18(10), 108001 (2013).
[Crossref] [PubMed]

M. Strojnik and G. Paez, “Optical system for bispectral Imaging in mid-IR at 1000 frames per second,” Adv. Opt. Technol. 2013, 905870 (2013).

M. Strojnik, G. Paez, and M. K. Scholl, “Combustion initiation and evolution during the first 400 msec in a gas burner at 10 μm,” Infrared Phys. Technol. 61, 42–49 (2013).
[Crossref]

J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(3-5), 219–222 (2002).
[Crossref]

Pegrum, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Pegrum, S. H.

Perevalov, V. I.

S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transf. 112(9), 1403–1410 (2011).
[Crossref]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Perrin, M. Y.

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 1–13 (2012).
[Crossref]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 14–25 (2012).
[Crossref]

Qian, Y.

H. Jiang, Y. Qian, and K. T. Rhee, “High-speed dual-spectra infrared imaging,” Optim. Eng. 32(6), 1281–1289 (1993).
[Crossref]

Rankin, B. A.

J. L. Harley, B. A. Rankin, D. L. Blunck, J. P. Gore, and K. C. Gross, “Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame,” Opt. Lett. 39(8), 2350–2353 (2014).
[Crossref] [PubMed]

B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2012).
[Crossref]

Reichard, K.

Rhee, K. T.

H. Jiang, Y. Qian, and K. T. Rhee, “High-speed dual-spectra infrared imaging,” Optim. Eng. 32(6), 1281–1289 (1993).
[Crossref]

Rhoby, M. R.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Riviere, P.

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 14–25 (2012).
[Crossref]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 1–13 (2012).
[Crossref]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Roy, S.

Ruffin, P.

Sanders, S. T.

Santoro, R. J.

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P.-L. Chien, R. J. Santoro, and H. G. Semerjian, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Inst. 21(1), 1763–1771 (1988).
[Crossref]

Schmauss, B.

Scholl, J. W.

J. W. Scholl and M. S. Scholl, “Measurement of small temperature fluctuations at high average temperature,” in Infrared Technology XIV, Proc. SPIE 972, 409–415 (1988).
[Crossref]

M. S. Scholl and J. W. Scholl, “Time and position varying infrared scene simulation,” in Infrared Technology XIII, Proc. SPIE 819, 297–301 (1987).
[Crossref]

Scholl, M. K.

M. Strojnik, G. Paez, and M. K. Scholl, “Combustion initiation and evolution during the first 400 msec in a gas burner at 10 μm,” Infrared Phys. Technol. 61, 42–49 (2013).
[Crossref]

Scholl, M. S.

J. W. Scholl and M. S. Scholl, “Measurement of small temperature fluctuations at high average temperature,” in Infrared Technology XIV, Proc. SPIE 972, 409–415 (1988).
[Crossref]

M. S. Scholl and J. W. Scholl, “Time and position varying infrared scene simulation,” in Infrared Technology XIII, Proc. SPIE 819, 297–301 (1987).
[Crossref]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Seeger, T.

Semerjian, H. G.

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P.-L. Chien, R. J. Santoro, and H. G. Semerjian, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Inst. 21(1), 1763–1771 (1988).
[Crossref]

Shi, K.

Solomon, P. R.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85(3–4), 309–318 (1991).
[Crossref]

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P.-L. Chien, R. J. Santoro, and H. G. Semerjian, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Inst. 21(1), 1763–1771 (1988).
[Crossref]

Soufiani, A.

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 1–13 (2012).
[Crossref]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 14–25 (2012).
[Crossref]

Strojnik, M.

M. Strojnik and G. Paez, “Optical system for bispectral Imaging in mid-IR at 1000 frames per second,” Adv. Opt. Technol. 2013, 905870 (2013).

M. Strojnik and G. Paez, “Spectral dependence of absorption sensitivity on concentration of oxygenated hemoglobin: pulse oximetry implications,” J. Biomed. Opt. 18(10), 108001 (2013).
[Crossref] [PubMed]

M. Strojnik, G. Paez, and M. K. Scholl, “Combustion initiation and evolution during the first 400 msec in a gas burner at 10 μm,” Infrared Phys. Technol. 61, 42–49 (2013).
[Crossref]

J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(3-5), 219–222 (2002).
[Crossref]

Svanberg, S.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53(4), 260–264 (1991).
[Crossref]

Sych, Y.

Tashkun, S. A.

S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transf. 112(9), 1403–1410 (2011).
[Crossref]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Tennyson, J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Terzija, N.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Turner, P.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Turner, P. J.

Urata, Y.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Wang, Q.

Watt, R. S.

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Werblinski, T.

Will, S.

Wolga, G. J.

Wright, P.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Yan, Y.

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54(4), 1417–1421 (2005).
[Crossref]

Yang, C.-E.

Yin, S. S.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Zheng, Y.

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Inst. 32(2), 2527–2534 (2009).
[Crossref]

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Inst. 31(2), 2581–2588 (2007).
[Crossref]

Zigan, L.

Adv. Opt. Technol. (1)

M. Strojnik and G. Paez, “Optical system for bispectral Imaging in mid-IR at 1000 frames per second,” Adv. Opt. Technol. 2013, 905870 (2013).

Appl. Opt. (7)

L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt. 47(21), 3751–3759 (2008).
[Crossref] [PubMed]

M. P. Arroyo and R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32(30), 6104–6116 (1993).
[Crossref] [PubMed]

K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt. 34(24), 5492–5500 (1995).
[Crossref] [PubMed]

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44(31), 6578–6592 (2005).
[Crossref] [PubMed]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44(31), 6729–6740 (2005).
[Crossref] [PubMed]

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt. 46(19), 4117–4124 (2007).
[Crossref] [PubMed]

J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51(7), 834–840 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53(4), 260–264 (1991).
[Crossref]

Appl. Spectrosc. (1)

Chem. Eng. J. (1)

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Combust. Flame (1)

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85(3–4), 309–318 (1991).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54(4), 1417–1421 (2005).
[Crossref]

in Infrared Technology XIII, Proc. SPIE (1)

M. S. Scholl and J. W. Scholl, “Time and position varying infrared scene simulation,” in Infrared Technology XIII, Proc. SPIE 819, 297–301 (1987).
[Crossref]

in Infrared Technology XIV, Proc. SPIE (1)

J. W. Scholl and M. S. Scholl, “Measurement of small temperature fluctuations at high average temperature,” in Infrared Technology XIV, Proc. SPIE 972, 409–415 (1988).
[Crossref]

Infrared Phys. Technol. (2)

M. Strojnik, G. Paez, and M. K. Scholl, “Combustion initiation and evolution during the first 400 msec in a gas burner at 10 μm,” Infrared Phys. Technol. 61, 42–49 (2013).
[Crossref]

J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(3-5), 219–222 (2002).
[Crossref]

J. Biomed. Opt. (1)

M. Strojnik and G. Paez, “Spectral dependence of absorption sensitivity on concentration of oxygenated hemoglobin: pulse oximetry implications,” J. Biomed. Opt. 18(10), 108001 (2013).
[Crossref] [PubMed]

J. Heat Transfer (1)

B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2012).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (5)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transf. 112(9), 1403–1410 (2011).
[Crossref]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 14–25 (2012).
[Crossref]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 1–13 (2012).
[Crossref]

Opt. Commun. (2)

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[Crossref]

H. M. Hertz, “Experimental-determination of 2-D flame temperature-fields by interferometric tomography,” Opt. Commun. 54(3), 131–136 (1985).
[Crossref]

Opt. Express (8)

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
[Crossref] [PubMed]

J. H. Kim, M.-K. Chen, C.-E. Yang, J. Lee, K. Shi, Z. Liu, S. S. Yin, K. Reichard, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber,” Opt. Express 16(19), 14792–14800 (2008).
[Crossref] [PubMed]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17(10), 8602–8613 (2009).
[Crossref] [PubMed]

Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express 18(22), 22762–22771 (2010).
[Crossref] [PubMed]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
[Crossref] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[Crossref] [PubMed]

M. R. Rhoby, D. L. Blunck, and K. C. Gross, “Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values,” Opt. Express 22(18), 21600–21617 (2014).
[Crossref] [PubMed]

T. Werblinski, S. R. Engel, R. Engelbrecht, L. Zigan, and S. Will, “Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications,” Opt. Express 21(11), 13656–13667 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Optim. Eng. (1)

H. Jiang, Y. Qian, and K. T. Rhee, “High-speed dual-spectra infrared imaging,” Optim. Eng. 32(6), 1281–1289 (1993).
[Crossref]

Proc. Combust. Inst. (3)

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P.-L. Chien, R. J. Santoro, and H. G. Semerjian, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Inst. 21(1), 1763–1771 (1988).
[Crossref]

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Inst. 32(2), 2527–2534 (2009).
[Crossref]

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Inst. 31(2), 2581–2588 (2007).
[Crossref]

Other (2)

W. R. Ashby, “Principles of the self-organizing system,” in Principles of Self-Organization: Transactions of the University of Illinois Symposium, H. Von Foerster and G. W. Zopf, Pergamon Press (United Kingdom, 1962).

M. Strojnik and G. Paez, “Radiometry,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, Marcel Dekker (New York, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic layout of a bispectral experiment with simultaneous imaging in two parallel channels. Images are displaced side-by-side by aligning mirrors at 45° +/− Δ. Images are captured by the high-resolution FPA employing InSb. For bispectral flame imaging, radiation is filtered with filters FA and FB centered at 4.3 μm and at 4.66 μm.
Fig. 2
Fig. 2 Photographs of the experimental setup and the field bispectral imager, with the cover removed. The IR camera is included in the photo of the laboratory arrangement.
Fig. 3
Fig. 3 The FPA of the bispectral imager detects two spectral images every ms. Flame images are obtained in spectral bands at 4.66 μm (band 2, left) and 4.3 μm (band 1, right).
Fig. 4
Fig. 4 Spatial calibration. Two images (right) of a single test object (left) are simultaneously captured through different optical channels after removing spectral filters.
Fig. 5
Fig. 5 A single bispectral ratioed image.
Fig. 6
Fig. 6 Twelve representative images illustrate the bispectral ratio images at t = 83 ms (top left image) to t = 1 s (bottom right image), separated by Δt = 83 ms. Left panel presents the case of low oxygenation, right panel that of high oxygenation. The color scale is indicated in the middle with 0 (dark blue) denoting low values for the ratio and 1 (dark red) indicating high values.
Fig. 7
Fig. 7 Total amount of radiation in the image transmitted by filter A (4.3 μm, band 1) and filter B (4.66 μm, band 2) as a function of time, at 1,000 fps, for low- (left) and high- (right) oxygenation level. The upper and lower curves present the total power integrated over the band 1 flame image and band 2 image.
Fig. 8
Fig. 8 The simple ratio of the total amount of radiation in band 1 (4.3 μm) over that in band 2 (4.66 μm) as a function of time at 1,000 frames per second for low- (left) and high- (right) oxygenation levels.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R 1 , 2 ( x , y , t ) = L Δ λ 1 ( x , y , t ) L Δ λ 1 ( x , y , t ) + L Δ λ 2 ( x , y , t )

Metrics