Abstract

In this work, we investigate the impact of nano-scale pores within structured metamaterials on spectral near-field radiative transfer. We use Finite Difference Time Domain Method (FDTD) and consider uniform and corrugated SiC substrates filled with rectangular nano-scale vacuum inclusions having equivalent diameters of 10, 37 and 57 nm. We report the appearance of the secondary and tertiary resonance peaks at different frequencies as a function of changing pore diameter, which cannot be predicted if an effective medium theory approximation is used.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-field thermal upconversion and energy transfer through a Kerr medium

Chinmay Khandekar and Alejandro W. Rodriguez
Opt. Express 25(19) 23164-23180 (2017)

Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles

Mathieu Francoeur, Soumyadipta Basu, and Spencer J. Petersen
Opt. Express 19(20) 18774-18788 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son & Co., 1914).
  2. S. M. Rytov, Theory of Electric Fluctuations and Thermal radiation (Air Force Cambridge Research Center, 1953).
  3. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. 4(10), 3303–3314 (1971).
    [Crossref]
  4. J. J. Loomis, H. J. Maris, J. J. Loomis, and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B 50(24), 18517–18524 (1994).
    [Crossref]
  5. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
    [Crossref]
  6. A. Narayanaswamy and G. Chen, “Thermal near-field radiative transfer between two spheres,” Phys. Rev. B 77(7), 075125 (2008).
    [Crossref]
  7. C. Otey and S. Fan, “Numerically exact calculations of electromagnetic heat transfer between a dielectric sphere and a plate,” Phys. Rev. B 84(24), 245431 (2011).
    [Crossref]
  8. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quantum Spectrosc. Ra. 110(18), 2002–2018 (2009).
    [Crossref]
  9. P. Ben-Abdallah, S. A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107(11), 114301 (2011).
    [Crossref] [PubMed]
  10. C. J. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009).
    [Crossref]
  11. B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
    [Crossref]
  12. C. J. Fu and Z. M. Zhang, “Further investigation of coherent thermal emission from single negative materials,” Nanosc. Microsc. Therm. 12(1), 83–97 (2008).
    [Crossref]
  13. Z. M. Zhang, C. J. Fu, and Q. Z. Zhu, “Optical and thermal radiative properties of semiconductors related to micro/nanotechnology,” Adv. Heat Transf. 37, 179–296 (2003).
    [Crossref]
  14. A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95(22), 224301 (2005).
    [Crossref] [PubMed]
  15. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
    [Crossref]
  16. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
    [Crossref] [PubMed]
  17. L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
    [Crossref]
  18. A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
    [Crossref] [PubMed]
  19. A. Datas, D. Hirashima, and K. Hanamura, “FDTD simulation of near-field radiative heat transfer between thin films supporting surface phonon polaritons: Lessons learned,” Int. J. Therm. Sci. 8, 91–105 (2013).
  20. A. Didari and M. P. Mengüç, “Analysis of near-field radiation transfer within nano-gaps using FDTD method,” J. Quantum Spectrosc. Ra. 146, 214–226 (2014).
    [Crossref]
  21. A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating surface-current formulation of radiative heat transfer for arbitrary geometries,” Phys. Rev. B 86(22), 220302 (2012).
    [Crossref]
  22. S. Edalatpour and M. Francoeur, “The Thermal Discrete Dipole Approximation (T-DDA) for near-field radiative heat transfer simulations in three-dimensional arbitrary geometries,” J. Quantum Spectrosc. Ra. 133, 364–373 (2014).
    [Crossref]
  23. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
    [Crossref]
  24. A. Didari and M. P. Mengüç, “Near-field thermal emission between corrugated surfaces separated by nano-gaps,” J. Quantum Spectrosc. Ra. 158, 43–51 (2015).
    [Crossref]
  25. A. Didari and M. P. Mengüç, “Near- to far-field coherent thermal emission by surfaces coated by nanoparticles and the evaluation of effective medium theory,” Opt. Express 23(11), A547–A552 (2015).
    [Crossref] [PubMed]
  26. S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express 19(S5), A1088–A1103 (2011).
    [Crossref] [PubMed]
  27. J. Li, Y. Feng, X. Zhang, C. Huang, and G. Wang, “Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica,” Phys. B-Condensed Matter 456, 237–243 (2015).
    [Crossref]
  28. P. Liu and G. F. Chen, Porous Materials: Processing and Applications (Elsevier, 2014).

2015 (3)

A. Didari and M. P. Mengüç, “Near-field thermal emission between corrugated surfaces separated by nano-gaps,” J. Quantum Spectrosc. Ra. 158, 43–51 (2015).
[Crossref]

A. Didari and M. P. Mengüç, “Near- to far-field coherent thermal emission by surfaces coated by nanoparticles and the evaluation of effective medium theory,” Opt. Express 23(11), A547–A552 (2015).
[Crossref] [PubMed]

J. Li, Y. Feng, X. Zhang, C. Huang, and G. Wang, “Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica,” Phys. B-Condensed Matter 456, 237–243 (2015).
[Crossref]

2014 (2)

S. Edalatpour and M. Francoeur, “The Thermal Discrete Dipole Approximation (T-DDA) for near-field radiative heat transfer simulations in three-dimensional arbitrary geometries,” J. Quantum Spectrosc. Ra. 133, 364–373 (2014).
[Crossref]

A. Didari and M. P. Mengüç, “Analysis of near-field radiation transfer within nano-gaps using FDTD method,” J. Quantum Spectrosc. Ra. 146, 214–226 (2014).
[Crossref]

2013 (1)

A. Datas, D. Hirashima, and K. Hanamura, “FDTD simulation of near-field radiative heat transfer between thin films supporting surface phonon polaritons: Lessons learned,” Int. J. Therm. Sci. 8, 91–105 (2013).

2012 (1)

A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating surface-current formulation of radiative heat transfer for arbitrary geometries,” Phys. Rev. B 86(22), 220302 (2012).
[Crossref]

2011 (4)

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

C. Otey and S. Fan, “Numerically exact calculations of electromagnetic heat transfer between a dielectric sphere and a plate,” Phys. Rev. B 84(24), 245431 (2011).
[Crossref]

P. Ben-Abdallah, S. A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107(11), 114301 (2011).
[Crossref] [PubMed]

S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express 19(S5), A1088–A1103 (2011).
[Crossref] [PubMed]

2010 (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

2009 (4)

C. J. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quantum Spectrosc. Ra. 110(18), 2002–2018 (2009).
[Crossref]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[Crossref]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[Crossref] [PubMed]

2008 (3)

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

C. J. Fu and Z. M. Zhang, “Further investigation of coherent thermal emission from single negative materials,” Nanosc. Microsc. Therm. 12(1), 83–97 (2008).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal near-field radiative transfer between two spheres,” Phys. Rev. B 77(7), 075125 (2008).
[Crossref]

2005 (2)

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
[Crossref]

A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95(22), 224301 (2005).
[Crossref] [PubMed]

2003 (1)

Z. M. Zhang, C. J. Fu, and Q. Z. Zhu, “Optical and thermal radiative properties of semiconductors related to micro/nanotechnology,” Adv. Heat Transf. 37, 179–296 (2003).
[Crossref]

2002 (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

1994 (1)

J. J. Loomis, H. J. Maris, J. J. Loomis, and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B 50(24), 18517–18524 (1994).
[Crossref]

1971 (1)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. 4(10), 3303–3314 (1971).
[Crossref]

Ben-Abdallah, P.

Bermel, P.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Biehs, S. A.

P. Ben-Abdallah, S. A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107(11), 114301 (2011).
[Crossref] [PubMed]

S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express 19(S5), A1088–A1103 (2011).
[Crossref] [PubMed]

A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95(22), 224301 (2005).
[Crossref] [PubMed]

Carminati, R.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Celanovic, I.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Chen, G.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[Crossref] [PubMed]

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal near-field radiative transfer between two spheres,” Phys. Rev. B 77(7), 075125 (2008).
[Crossref]

Chen, X. Y.

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Chevrier, J.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[Crossref]

Comin, F.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[Crossref]

Datas, A.

A. Datas, D. Hirashima, and K. Hanamura, “FDTD simulation of near-field radiative heat transfer between thin films supporting surface phonon polaritons: Lessons learned,” Int. J. Therm. Sci. 8, 91–105 (2013).

Didari, A.

A. Didari and M. P. Mengüç, “Near-field thermal emission between corrugated surfaces separated by nano-gaps,” J. Quantum Spectrosc. Ra. 158, 43–51 (2015).
[Crossref]

A. Didari and M. P. Mengüç, “Near- to far-field coherent thermal emission by surfaces coated by nanoparticles and the evaluation of effective medium theory,” Opt. Express 23(11), A547–A552 (2015).
[Crossref] [PubMed]

A. Didari and M. P. Mengüç, “Analysis of near-field radiation transfer within nano-gaps using FDTD method,” J. Quantum Spectrosc. Ra. 146, 214–226 (2014).
[Crossref]

Edalatpour, S.

S. Edalatpour and M. Francoeur, “The Thermal Discrete Dipole Approximation (T-DDA) for near-field radiative heat transfer simulations in three-dimensional arbitrary geometries,” J. Quantum Spectrosc. Ra. 133, 364–373 (2014).
[Crossref]

Fan, S.

C. Otey and S. Fan, “Numerically exact calculations of electromagnetic heat transfer between a dielectric sphere and a plate,” Phys. Rev. B 84(24), 245431 (2011).
[Crossref]

Feng, Y.

J. Li, Y. Feng, X. Zhang, C. Huang, and G. Wang, “Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica,” Phys. B-Condensed Matter 456, 237–243 (2015).
[Crossref]

Francoeur, M.

S. Edalatpour and M. Francoeur, “The Thermal Discrete Dipole Approximation (T-DDA) for near-field radiative heat transfer simulations in three-dimensional arbitrary geometries,” J. Quantum Spectrosc. Ra. 133, 364–373 (2014).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quantum Spectrosc. Ra. 110(18), 2002–2018 (2009).
[Crossref]

Fu, C. J.

C. J. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009).
[Crossref]

C. J. Fu and Z. M. Zhang, “Further investigation of coherent thermal emission from single negative materials,” Nanosc. Microsc. Therm. 12(1), 83–97 (2008).
[Crossref]

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
[Crossref]

Z. M. Zhang, C. J. Fu, and Q. Z. Zhu, “Optical and thermal radiative properties of semiconductors related to micro/nanotechnology,” Adv. Heat Transf. 37, 179–296 (2003).
[Crossref]

Greffet, J. J.

S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express 19(S5), A1088–A1103 (2011).
[Crossref] [PubMed]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[Crossref]

Greffet, J.-J.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Hanamura, K.

A. Datas, D. Hirashima, and K. Hanamura, “FDTD simulation of near-field radiative heat transfer between thin films supporting surface phonon polaritons: Lessons learned,” Int. J. Therm. Sci. 8, 91–105 (2013).

Hirashima, D.

A. Datas, D. Hirashima, and K. Hanamura, “FDTD simulation of near-field radiative heat transfer between thin films supporting surface phonon polaritons: Lessons learned,” Int. J. Therm. Sci. 8, 91–105 (2013).

Holthaus, M.

A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95(22), 224301 (2005).
[Crossref] [PubMed]

Hu, L.

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Huang, C.

J. Li, Y. Feng, X. Zhang, C. Huang, and G. Wang, “Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica,” Phys. B-Condensed Matter 456, 237–243 (2015).
[Crossref]

Ilic, O.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Johnson, S. G.

A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating surface-current formulation of radiative heat transfer for arbitrary geometries,” Phys. Rev. B 86(22), 220302 (2012).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Joulain, K.

P. Ben-Abdallah, S. A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107(11), 114301 (2011).
[Crossref] [PubMed]

S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express 19(S5), A1088–A1103 (2011).
[Crossref] [PubMed]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Jourdan, G.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[Crossref]

Kittel, A.

A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95(22), 224301 (2005).
[Crossref] [PubMed]

Lee, B. J.

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
[Crossref]

Li, J.

J. Li, Y. Feng, X. Zhang, C. Huang, and G. Wang, “Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica,” Phys. B-Condensed Matter 456, 237–243 (2015).
[Crossref]

Loomis, J. J.

J. J. Loomis, H. J. Maris, J. J. Loomis, and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B 50(24), 18517–18524 (1994).
[Crossref]

J. J. Loomis, H. J. Maris, J. J. Loomis, and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B 50(24), 18517–18524 (1994).
[Crossref]

Maris, H. J.

J. J. Loomis, H. J. Maris, J. J. Loomis, and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B 50(24), 18517–18524 (1994).
[Crossref]

J. J. Loomis, H. J. Maris, J. J. Loomis, and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B 50(24), 18517–18524 (1994).
[Crossref]

Mengüç, M. P.

A. Didari and M. P. Mengüç, “Near-field thermal emission between corrugated surfaces separated by nano-gaps,” J. Quantum Spectrosc. Ra. 158, 43–51 (2015).
[Crossref]

A. Didari and M. P. Mengüç, “Near- to far-field coherent thermal emission by surfaces coated by nanoparticles and the evaluation of effective medium theory,” Opt. Express 23(11), A547–A552 (2015).
[Crossref] [PubMed]

A. Didari and M. P. Mengüç, “Analysis of near-field radiation transfer within nano-gaps using FDTD method,” J. Quantum Spectrosc. Ra. 146, 214–226 (2014).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quantum Spectrosc. Ra. 110(18), 2002–2018 (2009).
[Crossref]

Mulet, J.-P.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Müller-Hirsch, W.

A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95(22), 224301 (2005).
[Crossref] [PubMed]

Narayanaswamy, A.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[Crossref] [PubMed]

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal near-field radiative transfer between two spheres,” Phys. Rev. B 77(7), 075125 (2008).
[Crossref]

Otey, C.

C. Otey and S. Fan, “Numerically exact calculations of electromagnetic heat transfer between a dielectric sphere and a plate,” Phys. Rev. B 84(24), 245431 (2011).
[Crossref]

Parisi, J.

A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95(22), 224301 (2005).
[Crossref] [PubMed]

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. 4(10), 3303–3314 (1971).
[Crossref]

Reddig, D.

A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95(22), 224301 (2005).
[Crossref] [PubMed]

Reid, M. T. H.

A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating surface-current formulation of radiative heat transfer for arbitrary geometries,” Phys. Rev. B 86(22), 220302 (2012).
[Crossref]

Rodriguez, A. W.

A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating surface-current formulation of radiative heat transfer for arbitrary geometries,” Phys. Rev. B 86(22), 220302 (2012).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Rosa, F. S. S.

Rousseau, E.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[Crossref]

Shen, S.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[Crossref] [PubMed]

Siria, A.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[Crossref]

Soljacic, M.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Vaillon, R.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quantum Spectrosc. Ra. 110(18), 2002–2018 (2009).
[Crossref]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. 4(10), 3303–3314 (1971).
[Crossref]

Volz, S.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[Crossref]

Wang, G.

J. Li, Y. Feng, X. Zhang, C. Huang, and G. Wang, “Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica,” Phys. B-Condensed Matter 456, 237–243 (2015).
[Crossref]

Zhang, X.

J. Li, Y. Feng, X. Zhang, C. Huang, and G. Wang, “Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica,” Phys. B-Condensed Matter 456, 237–243 (2015).
[Crossref]

Zhang, Z. M.

C. J. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009).
[Crossref]

C. J. Fu and Z. M. Zhang, “Further investigation of coherent thermal emission from single negative materials,” Nanosc. Microsc. Therm. 12(1), 83–97 (2008).
[Crossref]

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
[Crossref]

Z. M. Zhang, C. J. Fu, and Q. Z. Zhu, “Optical and thermal radiative properties of semiconductors related to micro/nanotechnology,” Adv. Heat Transf. 37, 179–296 (2003).
[Crossref]

Zhu, Q. Z.

Z. M. Zhang, C. J. Fu, and Q. Z. Zhu, “Optical and thermal radiative properties of semiconductors related to micro/nanotechnology,” Adv. Heat Transf. 37, 179–296 (2003).
[Crossref]

Adv. Heat Transf. (1)

Z. M. Zhang, C. J. Fu, and Q. Z. Zhu, “Optical and thermal radiative properties of semiconductors related to micro/nanotechnology,” Adv. Heat Transf. 37, 179–296 (2003).
[Crossref]

Appl. Phys. Lett. (2)

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 071904 (2005).
[Crossref]

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Front. Energy Power Eng. China (1)

C. J. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009).
[Crossref]

Int. J. Therm. Sci. (1)

A. Datas, D. Hirashima, and K. Hanamura, “FDTD simulation of near-field radiative heat transfer between thin films supporting surface phonon polaritons: Lessons learned,” Int. J. Therm. Sci. 8, 91–105 (2013).

J. Appl. Phys. (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

J. Quantum Spectrosc. Ra. (4)

A. Didari and M. P. Mengüç, “Near-field thermal emission between corrugated surfaces separated by nano-gaps,” J. Quantum Spectrosc. Ra. 158, 43–51 (2015).
[Crossref]

A. Didari and M. P. Mengüç, “Analysis of near-field radiation transfer within nano-gaps using FDTD method,” J. Quantum Spectrosc. Ra. 146, 214–226 (2014).
[Crossref]

S. Edalatpour and M. Francoeur, “The Thermal Discrete Dipole Approximation (T-DDA) for near-field radiative heat transfer simulations in three-dimensional arbitrary geometries,” J. Quantum Spectrosc. Ra. 133, 364–373 (2014).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quantum Spectrosc. Ra. 110(18), 2002–2018 (2009).
[Crossref]

Microscale Thermophys. Eng. (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Nano Lett. (1)

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[Crossref] [PubMed]

Nanosc. Microsc. Therm. (1)

C. J. Fu and Z. M. Zhang, “Further investigation of coherent thermal emission from single negative materials,” Nanosc. Microsc. Therm. 12(1), 83–97 (2008).
[Crossref]

Nat. Photonics (1)

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[Crossref]

Opt. Express (2)

Phys. B-Condensed Matter (1)

J. Li, Y. Feng, X. Zhang, C. Huang, and G. Wang, “Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica,” Phys. B-Condensed Matter 456, 237–243 (2015).
[Crossref]

Phys. Rev. (1)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. 4(10), 3303–3314 (1971).
[Crossref]

Phys. Rev. B (4)

J. J. Loomis, H. J. Maris, J. J. Loomis, and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B 50(24), 18517–18524 (1994).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal near-field radiative transfer between two spheres,” Phys. Rev. B 77(7), 075125 (2008).
[Crossref]

C. Otey and S. Fan, “Numerically exact calculations of electromagnetic heat transfer between a dielectric sphere and a plate,” Phys. Rev. B 84(24), 245431 (2011).
[Crossref]

A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating surface-current formulation of radiative heat transfer for arbitrary geometries,” Phys. Rev. B 86(22), 220302 (2012).
[Crossref]

Phys. Rev. Lett. (3)

P. Ben-Abdallah, S. A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107(11), 114301 (2011).
[Crossref] [PubMed]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95(22), 224301 (2005).
[Crossref] [PubMed]

Other (3)

M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son & Co., 1914).

S. M. Rytov, Theory of Electric Fluctuations and Thermal radiation (Air Force Cambridge Research Center, 1953).

P. Liu and G. F. Chen, Porous Materials: Processing and Applications (Elsevier, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Perfectly-flat parallel thin films separated by nano-gap (emitting layer at the bottom, non-emitting layer on top). b) Rectangular nanoparticles placed on the emitting film separated by nano-gap from non-emitting film. c) Porous SiC emitting layer layer separated by a vacuum gap from non-porous SiC non-emitting layer. d) Corrugated porous SiC emitting layer separated by a vacuum gap from non-porous SiC non-emitting layer.
Fig. 2
Fig. 2 Comparison of LDOS profile for benchmark scenario found through FDTD and EMT analysis for porous SiC emitting layer against corrugated porous emitting layer having D e q = 10 nm (left) and D e q = 37 nm (right).
Fig. 3
Fig. 3 Comparisons of the normalized LDOS profiles for the benchmark case and that for the corrugated porous emitting SiC layer with D e q = 57 nm as obtained from the FDTD and the EMT simulations.
Fig. 4
Fig. 4 (Left) Comparison of normalized heat flux profiles for the benchmark case against a corrugated porous SiC emitting layer of D e q = 37 nm. (Right) Impact of horizontal pore spacing on normalized heat flux profile, D e q = 37 nm.

Metrics