Abstract

We report on a band edge absorber/emitter design for high-temperature applications based on an unstructured tungsten substrate and a monolayer of ceramic microspheres. The absorber was fabricated as a monolayer of ZrO2 microparticles on a tungsten layer with a HfO2 nanocoating. The band edge of the absorption is based on critically coupled microsphere resonances. It can be tuned from visible to near-infrared range by varying the diameter of the microparticles. The absorption properties were found to be stable up to 1000°C.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application

Huacun Wang, Qin Chen, Long Wen, Shichao Song, Xin Hu, and Gaiqi Xu
Photon. Res. 3(6) 329-334 (2015)

Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

Manohar Chirumamilla, Alexander S. Roberts, Fei Ding, Deyong Wang, Peter Kjær Kristensen, Sergey I. Bozhevolnyi, and Kjeld Pedersen
Opt. Mater. Express 6(8) 2704-2714 (2016)

Tungsten based anisotropic metamaterial as an ultra-broadband absorber

Yinyue Lin, Yanxia Cui, Fei Ding, Kin Hung Fung, Ting Ji, Dongdong Li, and Yuying Hao
Opt. Mater. Express 7(2) 606-617 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151 (2003).
    [Crossref]
  2. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [Crossref] [PubMed]
  3. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
    [Crossref] [PubMed]
  4. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  5. A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6Suppl 6), A1604–A1618 (2014).
    [Crossref] [PubMed]
  6. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29(8), 863–865 (2004).
    [Crossref] [PubMed]
  7. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [Crossref] [PubMed]
  8. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [Crossref]
  9. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
    [Crossref]
  10. P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
    [Crossref]
  11. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
    [Crossref] [PubMed]
  12. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
    [Crossref] [PubMed]
  13. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
    [Crossref]
  14. J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
    [Crossref] [PubMed]
  15. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  16. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
    [Crossref]
  17. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
    [Crossref] [PubMed]
  18. Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
    [Crossref] [PubMed]
  19. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  20. F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
    [Crossref]
  21. H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
    [Crossref]
  22. D. Peykov, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and C. A. Schuh, “Effects of surface diffusion on high temperature selective emitters,” Opt. Express 23(8), 9979–9993 (2015).
    [Crossref] [PubMed]
  23. X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
    [Crossref]
  24. M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, and A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
    [Crossref]
  25. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
    [Crossref] [PubMed]
  26. M. López-García, J. F. Galisteo-López, C. López, and A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
    [Crossref]
  27. P. N. Dyachenko, A. Yu. Petrov, and M. Eich, “Perfect narrow-band absorber based on a monolayer of metallodielectric microspheres,” Appl. Phys. Lett. 103(21), 211105 (2013).
    [Crossref]
  28. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
    [Crossref] [PubMed]
  29. M. Langlais, J.-P. Hugonin, M. Besbes, and P. Ben-Abdallah, “Cooperative electromagnetic interactions between nanoparticles for solar energy harvesting,” Opt. Express 22(S3Suppl 3), A577–A588 (2014).
    [Crossref] [PubMed]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. D. L. Wood and K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21(16), 2978–2981 (1982).
    [Crossref] [PubMed]
  32. A. Ferriere, L. Lestrade, and J.-F. Robert, “Optical properties of plasma-sprayed ZrO2-Y2O3 at high temperature for solar applications,” J. Sol. Energy Eng. 122(1), 9–13 (2000).
    [Crossref]
  33. R. Siegel, Thermal Radiation Heat Transfer (CRC Press, 2001).
  34. P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
    [Crossref]
  35. E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
    [Crossref] [PubMed]

2015 (2)

D. Peykov, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and C. A. Schuh, “Effects of surface diffusion on high temperature selective emitters,” Opt. Express 23(8), 9979–9993 (2015).
[Crossref] [PubMed]

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

2014 (8)

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

M. Langlais, J.-P. Hugonin, M. Besbes, and P. Ben-Abdallah, “Cooperative electromagnetic interactions between nanoparticles for solar energy harvesting,” Opt. Express 22(S3Suppl 3), A577–A588 (2014).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6Suppl 6), A1604–A1618 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

2013 (7)

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

P. N. Dyachenko, A. Yu. Petrov, and M. Eich, “Perfect narrow-band absorber based on a monolayer of metallodielectric microspheres,” Appl. Phys. Lett. 103(21), 211105 (2013).
[Crossref]

2012 (3)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

M. López-García, J. F. Galisteo-López, C. López, and A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

2011 (4)

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

2010 (2)

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, and A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[Crossref]

2009 (1)

2004 (1)

2003 (3)

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151 (2003).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
[Crossref]

2000 (1)

A. Ferriere, L. Lestrade, and J.-F. Robert, “Optical properties of plasma-sprayed ZrO2-Y2O3 at high temperature for solar applications,” J. Sol. Energy Eng. 122(1), 9–13 (2000).
[Crossref]

1982 (1)

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Agrawal, M.

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Atwater, H. A.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Bathurst, S.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Ben-Abdallah, P.

Bermel, P.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Besbes, M.

Bierman, D. M.

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6Suppl 6), A1604–A1618 (2014).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Blanco, Á.

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, and A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[Crossref]

Boltasseva, A.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Braun, P. V.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Cao, F.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

Celanovic, I.

D. Peykov, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and C. A. Schuh, “Effects of surface diffusion on high temperature selective emitters,” Opt. Express 23(8), 9979–9993 (2015).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29(8), 863–865 (2004).
[Crossref] [PubMed]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Chen, G.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

Chou, J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Chou, J. B.

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Czaschke, C.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

Denny, N. R.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

Dewalt, C. J.

DeWilde, J.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

do Rosário, J. J.

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

Dyachenko, P. N.

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

P. N. Dyachenko, A. Yu. Petrov, and M. Eich, “Perfect narrow-band absorber based on a monolayer of metallodielectric microspheres,” Appl. Phys. Lett. 103(21), 211105 (2013).
[Crossref]

Eich, M.

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

P. N. Dyachenko, A. Yu. Petrov, and M. Eich, “Perfect narrow-band absorber based on a monolayer of metallodielectric microspheres,” Appl. Phys. Lett. 103(21), 211105 (2013).
[Crossref]

Fan, S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Ferriere, A.

A. Ferriere, L. Lestrade, and J.-F. Robert, “Optical properties of plasma-sprayed ZrO2-Y2O3 at high temperature for solar applications,” J. Sol. Energy Eng. 122(1), 9–13 (2000).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Galisteo-López, J. F.

M. López-García, J. F. Galisteo-López, C. López, and A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[Crossref]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, and A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[Crossref]

García-Martín, A.

M. López-García, J. F. Galisteo-López, C. López, and A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[Crossref]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, and A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[Crossref]

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Ghebrebrhan, M.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guler, U.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guo, Y.

Han, D.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Harder, N.-P.

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151 (2003).
[Crossref]

Hugonin, J.-P.

Ilak, M.

Jacob, Z.

Janssen, R.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Joannopoulos, J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Joannopoulos, J. D.

D. Peykov, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and C. A. Schuh, “Effects of surface diffusion on high temperature selective emitters,” Opt. Express 23(8), 9979–9993 (2015).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Josephson, D. P.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
[Crossref]

Kassakian, J.

Kildishev, A. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kim, S.-G.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Korovin, A. V.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Kubrin, R.

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

Kus, J.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

Langlais, M.

Lee, H.-J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Leib, E. W.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

Lenert, A.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6Suppl 6), A1604–A1618 (2014).
[Crossref] [PubMed]

Lestrade, L.

A. Ferriere, L. Lestrade, and J.-F. Robert, “Optical properties of plasma-sprayed ZrO2-Y2O3 at high temperature for solar applications,” J. Sol. Energy Eng. 122(1), 9–13 (2000).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

López, C.

M. López-García, J. F. Galisteo-López, C. López, and A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[Crossref]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, and A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[Crossref]

López-García, M.

M. López-García, J. F. Galisteo-López, C. López, and A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[Crossref]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, and A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[Crossref]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

McEnaney, K.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Molesky, S.

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Müller, M.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Nagpal, P.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

Naik, G. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6Suppl 6), A1604–A1618 (2014).
[Crossref] [PubMed]

Nassau, K.

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Norris, D. J.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

O’Sullivan, F.

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Pasquarelli, R. M.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

Perreault, D.

Peschel, U.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Petrov, A. Yu.

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

P. N. Dyachenko, A. Yu. Petrov, and M. Eich, “Perfect narrow-band absorber based on a monolayer of metallodielectric microspheres,” Appl. Phys. Lett. 103(21), 211105 (2013).
[Crossref]

Peumans, P.

Peykov, D.

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Pincon, O.

Regensburger, A.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Ren, Z.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

Rinnerbauer, V.

Robert, J.-F.

A. Ferriere, L. Lestrade, and J.-F. Robert, “Optical properties of plasma-sprayed ZrO2-Y2O3 at high temperature for solar applications,” J. Sol. Energy Eng. 122(1), 9–13 (2000).
[Crossref]

Romanov, S. G.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
[Crossref]

Saka, N.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Schneider, G. A.

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

Schreyer, A.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

Schuh, C. A.

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref] [PubMed]

Shalaev, V. M.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Shi, L.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Smyth, K.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Stein, A.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Vainio, U.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

Vossmeyer, T.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

Walter, N.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

Wang, E. N.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6Suppl 6), A1604–A1618 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Weller, H.

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

Wood, D. L.

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Würfel, P.

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151 (2003).
[Crossref]

Yeng, Y. X.

D. Peykov, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and C. A. Schuh, “Effects of surface diffusion on high temperature selective emitters,” Opt. Express 23(8), 9979–9993 (2015).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Yu, X.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Yu, Z.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
[Crossref]

Zhu, L.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Zi, J.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

ACS Photonics (1)

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, and M. Eich, “Ceramic photonic glass for broadband omnidirectional reflection,” ACS Photonics 1(11), 1127–1133 (2014).
[Crossref]

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljacic, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Adv. Funct. Mater. (2)

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, and A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[Crossref]

Adv. Mater. (3)

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

P. N. Dyachenko, A. Yu. Petrov, and M. Eich, “Perfect narrow-band absorber based on a monolayer of metallodielectric microspheres,” Appl. Phys. Lett. 103(21), 211105 (2013).
[Crossref]

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
[Crossref]

Energy Environ. Sci. (1)

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615–1627 (2014).
[Crossref]

J. Colloid Interface Sci. (1)

E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, and T. Vossmeyer, “Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres,” J. Colloid Interface Sci. 448, 582–592 (2015).
[Crossref] [PubMed]

J. Mater. Chem. (1)

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

J. Sol. Energy Eng. (1)

A. Ferriere, L. Lestrade, and J.-F. Robert, “Optical properties of plasma-sprayed ZrO2-Y2O3 at high temperature for solar applications,” J. Sol. Energy Eng. 122(1), 9–13 (2000).
[Crossref]

Nat. Commun. (1)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Opt. Express (8)

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6Suppl 6), A1604–A1618 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref] [PubMed]

D. Peykov, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and C. A. Schuh, “Effects of surface diffusion on high temperature selective emitters,” Opt. Express 23(8), 9979–9993 (2015).
[Crossref] [PubMed]

M. Langlais, J.-P. Hugonin, M. Besbes, and P. Ben-Abdallah, “Cooperative electromagnetic interactions between nanoparticles for solar energy harvesting,” Opt. Express 22(S3Suppl 3), A577–A588 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

M. López-García, J. F. Galisteo-López, C. López, and A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151 (2003).
[Crossref]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

R. Siegel, Thermal Radiation Heat Transfer (CRC Press, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Calculated absorption of radiation under normal incidence for a flat tungsten substrate (black) and a monolayer hexagonal array of ZrO2 particles with R = 500 nm deposited on a flat tungsten substrate (blue). Inset: Schematics of the two-dimensional hexagonal array of ceramic microspheres on the tungsten substrate. The electric energy density distributions for (b) λ1 = 2.14 µm, (c) λ2 = 1.56 µm, (d) λ3 = 1.28 µm and (e) λ4 = 1.06 µm is shown for the cross section parallel to the electric field polarization of the incident light. Arrows in (b) and (c) show the electric field polarization at the position of maximal energy density at the time when this maximum is achieved.

Fig. 2
Fig. 2

(a) Calculated absorption of radiation under normal incidence for monolayers of Al2O3 particles (blue), ZrO2 particles (gray) and TiO2 particles (red) with R = 500 nm deposited on a flat tungsten substrate. (b) Simulated absorption of the monolayer of ZrO2 particles with R = 500 nm for unpolarized light at 0°-45° angles of incidence.

Fig. 3
Fig. 3

Simulated absorption for different radii of ceramic microspheres.

Fig. 4
Fig. 4

SEM images of the monolayer of ZrO2 microparticles on the tungsten substrate deposited from spheres with radius 330 nm.

Fig. 5
Fig. 5

1-R(λ) spectra measured from monolayer of ZrO2 microparticles with 330 nm radius (blue), measured from tungsten substrate with 20 nm HfO2 coating (red) and averaged for simulated monolayers with varying particle sizes (black). (b) 1-R(λ) measurements of the monolayer of ZrO2 microparticles before annealing (black) and after heat cycling to 800°C (blue), 900°C (green), 1000°C (red) and 1100°C (brown).

Fig. 6
Fig. 6

SEM images of the edge of monolayers of ZrO2 microparticles on silicon/tungsten/HfO2 substrates before annealing (a) and after annealing at 1000°C for 3 h (b) and 1100°C for 3 h (c).

Metrics