Abstract

A series of photonic crystal structures are optimized for a photon enhanced thermionic emitter. With realistic parameter values to describe a p-type GaAs device we find an efficiency above 10%. The light-trapping structures increases the performance by 2% over an optimal bilayer anti-reflective coating. We find a device efficiency very close to the case of a Lambertian absorber, but below its maximum performance. To prevent an efficiency below 10% the vacuum gap must be dimensioned according to the concentration factor of the solar irradiance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependence of photoemission characteristics from AlxGa1−xAs/GaAs photocathodes

Kun Wang, Guiyuan Wang, Benkang Chang, Hongcam Tran, and Rongguo Fu
Appl. Opt. 56(21) 6015-6021 (2017)

Type II GaSb quantum ring solar cells under concentrated sunlight

Che-Pin Tsai, Shun-Chieh Hsu, Shih-Yen Lin, Ching-Wen Chang, Li-Wei Tu, Kun-Cheng Chen, Tsong-Sheng Lay, and Chien-chung Lin
Opt. Express 22(S2) A359-A364 (2014)

Photoemission from advanced heterostructured AlxGa1-xAs/GaAs photocathodes under multilevel built-in electric field

Cheng Feng, Yijun Zhang, Yunsheng Qian, Benkang Chang, Feng Shi, Gangcheng Jiao, and Jijun Zou
Opt. Express 23(15) 19478-19488 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Zimmermann, C. Nömayr, W. Köstler, A. Caon, E. Fernández, C. Baur, and H. Fiebrich, “Photovoltaic technology development for the BepiColombo mission,” in “Proceedings of the 9th European Space Power Conference”, L. Ouwehand (ESA, 2011).
  2. V. Kuznetsov, “Solar and heliospheric space missions,” Adv. Space Res. 55, 879–885 (2015).
    [Crossref]
  3. J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
    [Crossref]
  4. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, 1957).
  5. H. J. Goldsmid, Introduction to Thermoelectricity (Springer, 2010).
    [Crossref]
  6. G. Hatsopoulos and E. Gyphtopoulos, Thermionic Energy Conversion: Theory, Technology and Application (MIT Press, 1979).
  7. K. Reck and O. Hansen, “Thermodynamics of photon-enhanced thermionic emission solar cells,” Appl. Phys. Lett. 104, 023902 (2014).
    [Crossref]
  8. G. Segev, Y. Rosenwaks, and A. Kribus, “Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion,” Sol. Energ. Mat. Sol. Cells 140, 464–476 (2015).
    [Crossref]
  9. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
    [Crossref]
  10. S. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  11. J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, “Ultralow recombination velocity at Ga0.5In0.5 P/GaAs heterointerfaces,” Appl. Phys. Lett. 55, 1208–1210 (1989).
    [Crossref]
  12. W. Tang, W. Yang, Y. Yang, C. Sun, and Z. Cai, “GaAs film for photon-enhanced thermionic emission solar harvesters,” Mater. Sci. Semicond. Proc. 25, 143–147 (2014).
    [Crossref]
  13. J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
    [Crossref] [PubMed]
  14. A. Varpula and M. Prunnila, “Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters,” J. Appl. Phys. 112, 044506 (2012).
    [Crossref]
  15. A. Varpula, K. Tappura, and M. Prunnila, “Si, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells,” Sol. Energ. Mat. Sol. Cells 134, 351–358 (2015).
    [Crossref]
  16. S. Su, Y. Wang, T. Liu, G. Su, and J. Chen, “Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell,” Sol. Energ. Mat. Sol. Cells 121, 137–143 (2014).
    [Crossref]
  17. K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112, 094907 (2012).
    [Crossref]
  18. G. Segev, A. Kribus, and Y. Rosenwaks, “High performance isothermal photo-thermionic solar converters,” Sol. Energ. Mat. Sol. Cells 113, 114–123 (2013).
    [Crossref]
  19. V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
    [Crossref]
  20. L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 135, 78–92 (2015).
    [Crossref]
  21. G. Segev, Y. Rosenwaks, and A. Kribus, “Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters,” J. Appl. Phys. 114, 044505 (2013).
    [Crossref]
  22. G. Segev, Y. Rosenwaks, and A. Kribus, “Efficiency of photon enhanced thermionic emission solar converters,” Sol. Energ. Mat. Sol. Cells 107, 125–130 (2012).
    [Crossref]
  23. Wolfram Research, Inc., “Mathematica 10.0,” (2014).
  24. S. A. Boden and D. M. Bagnall, “Optimization of moth–eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl. 18, 195–203 (2010).
    [Crossref]
  25. F. L. Gonzalez, D. E. Morse, and M. J. Gordon, “Importance of diffuse scattering phenomena in moth–eye arrays for broadband infrared applications,” Opt. Lett. 39, 13–16 (2014).
    [Crossref]
  26. S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
    [Crossref] [PubMed]
  27. J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth–eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics Res. Appl. 21, 1158–1162 (2013).
  28. J. W. Leem, J. SuYu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energ. Mat. Sol. Cells 127, 43–49 (2014).
    [Crossref]
  29. J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Broadband antireflective nano-cones for tandem solar cells,” Opt. Express 23, A322–A336 (2015).
    [Crossref] [PubMed]
  30. W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40, 333–348 (1983).
    [Crossref]
  31. S. G. Johnson, “NLopt - AbInitio,”.
  32. S. Adachi, Properties of Group–IV, III–V and II–VI Semiconductors (Wiley, 2005).
  33. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
    [Crossref] [PubMed]
  34. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
    [Crossref]
  35. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt. 2, 303–311 (2012).
    [Crossref]
  36. J. M. Llorens, J. Buencuerpo, and P. A. Postigo, “Absorption features of the zero frequency mode in an ultra-thin slab,” Appl. Phys. Lett. 105, 231115 (2014).
    [Crossref]
  37. J.-H. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, “Optimal emitter-collector gap for thermionic energy converters,” Appl. Phys. Lett. 100, 173904 (2012).
    [Crossref]
  38. Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
    [Crossref]
  39. A. I. Shkrebtii, Z. A. Ibrahim, T. Teatro, W. Richter, M. J. Lee, and L. Henderson, “Theory of the temperature dependent dielectric function of semiconductors: from bulk to surfaces. Application to GaAs and Si,” Phys. Stat. Sol. B 247, 1881–1888 (2010).
    [Crossref]
  40. S. Adachi, “Excitonic effects in the optical spectrum of GaAs,” Phys. Rev. B 41, 1003–1013 (1990).
    [Crossref]
  41. I. Langmuir, “The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes,” Phys. Rev. 21, 419–435 (1923).
    [Crossref]
  42. Y. Yang, W. Yang, W. Tang, and C. Sun, “High-temperature solar cell for concentrated solar-power hybrid systems,” Appl. Phys. Lett. 103, 083902 (2013).
    [Crossref]
  43. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, Ltd., 2003).
    [Crossref]
  44. N. S. Fatemi, H. E. Pollard, H. Q. Hou, and P. R. Sharps, “Solar array trades between very high-efficiency multi-junction and si space solar cells,” in Proceedings of 28th IEEE PVSC (IEEE, 2000), pp. 1083–1086.

2015 (5)

V. Kuznetsov, “Solar and heliospheric space missions,” Adv. Space Res. 55, 879–885 (2015).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion,” Sol. Energ. Mat. Sol. Cells 140, 464–476 (2015).
[Crossref]

A. Varpula, K. Tappura, and M. Prunnila, “Si, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells,” Sol. Energ. Mat. Sol. Cells 134, 351–358 (2015).
[Crossref]

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 135, 78–92 (2015).
[Crossref]

J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Broadband antireflective nano-cones for tandem solar cells,” Opt. Express 23, A322–A336 (2015).
[Crossref] [PubMed]

2014 (6)

J. W. Leem, J. SuYu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energ. Mat. Sol. Cells 127, 43–49 (2014).
[Crossref]

F. L. Gonzalez, D. E. Morse, and M. J. Gordon, “Importance of diffuse scattering phenomena in moth–eye arrays for broadband infrared applications,” Opt. Lett. 39, 13–16 (2014).
[Crossref]

J. M. Llorens, J. Buencuerpo, and P. A. Postigo, “Absorption features of the zero frequency mode in an ultra-thin slab,” Appl. Phys. Lett. 105, 231115 (2014).
[Crossref]

S. Su, Y. Wang, T. Liu, G. Su, and J. Chen, “Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell,” Sol. Energ. Mat. Sol. Cells 121, 137–143 (2014).
[Crossref]

K. Reck and O. Hansen, “Thermodynamics of photon-enhanced thermionic emission solar cells,” Appl. Phys. Lett. 104, 023902 (2014).
[Crossref]

W. Tang, W. Yang, Y. Yang, C. Sun, and Z. Cai, “GaAs film for photon-enhanced thermionic emission solar harvesters,” Mater. Sci. Semicond. Proc. 25, 143–147 (2014).
[Crossref]

2013 (6)

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

G. Segev, A. Kribus, and Y. Rosenwaks, “High performance isothermal photo-thermionic solar converters,” Sol. Energ. Mat. Sol. Cells 113, 114–123 (2013).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters,” J. Appl. Phys. 114, 044505 (2013).
[Crossref]

Y. Yang, W. Yang, W. Tang, and C. Sun, “High-temperature solar cell for concentrated solar-power hybrid systems,” Appl. Phys. Lett. 103, 083902 (2013).
[Crossref]

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref] [PubMed]

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth–eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics Res. Appl. 21, 1158–1162 (2013).

2012 (7)

J.-H. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, “Optimal emitter-collector gap for thermionic energy converters,” Appl. Phys. Lett. 100, 173904 (2012).
[Crossref]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt. 2, 303–311 (2012).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Efficiency of photon enhanced thermionic emission solar converters,” Sol. Energ. Mat. Sol. Cells 107, 125–130 (2012).
[Crossref]

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112, 094907 (2012).
[Crossref]

A. Varpula and M. Prunnila, “Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters,” J. Appl. Phys. 112, 044506 (2012).
[Crossref]

2010 (4)

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

S. A. Boden and D. M. Bagnall, “Optimization of moth–eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl. 18, 195–203 (2010).
[Crossref]

A. I. Shkrebtii, Z. A. Ibrahim, T. Teatro, W. Richter, M. J. Lee, and L. Henderson, “Theory of the temperature dependent dielectric function of semiconductors: from bulk to surfaces. Application to GaAs and Si,” Phys. Stat. Sol. B 247, 1881–1888 (2010).
[Crossref]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

2008 (1)

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
[Crossref]

1990 (1)

S. Adachi, “Excitonic effects in the optical spectrum of GaAs,” Phys. Rev. B 41, 1003–1013 (1990).
[Crossref]

1989 (1)

J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, “Ultralow recombination velocity at Ga0.5In0.5 P/GaAs heterointerfaces,” Appl. Phys. Lett. 55, 1208–1210 (1989).
[Crossref]

1983 (1)

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40, 333–348 (1983).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

1923 (1)

I. Langmuir, “The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes,” Phys. Rev. 21, 419–435 (1923).
[Crossref]

Adachi, S.

S. Adachi, “Excitonic effects in the optical spectrum of GaAs,” Phys. Rev. B 41, 1003–1013 (1990).
[Crossref]

S. Adachi, Properties of Group–IV, III–V and II–VI Semiconductors (Wiley, 2005).

Aho, A.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth–eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics Res. Appl. 21, 1158–1162 (2013).

Ahrenkiel, R. K.

J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, “Ultralow recombination velocity at Ga0.5In0.5 P/GaAs heterointerfaces,” Appl. Phys. Lett. 55, 1208–1210 (1989).
[Crossref]

Andreani, L. C.

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 135, 78–92 (2015).
[Crossref]

Asatryan, A. A.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Optimization of moth–eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl. 18, 195–203 (2010).
[Crossref]

Bargatin, I.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

J.-H. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, “Optimal emitter-collector gap for thermionic energy converters,” Appl. Phys. Lett. 100, 173904 (2012).
[Crossref]

K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112, 094907 (2012).
[Crossref]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Baur, C.

C. Zimmermann, C. Nömayr, W. Köstler, A. Caon, E. Fernández, C. Baur, and H. Fiebrich, “Photovoltaic technology development for the BepiColombo mission,” in “Proceedings of the 9th European Space Power Conference”, L. Ouwehand (ESA, 2011).

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Optimization of moth–eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl. 18, 195–203 (2010).
[Crossref]

Botten, L. C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Bozzola, A.

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 135, 78–92 (2015).
[Crossref]

Buencuerpo, J.

J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Broadband antireflective nano-cones for tandem solar cells,” Opt. Express 23, A322–A336 (2015).
[Crossref] [PubMed]

J. M. Llorens, J. Buencuerpo, and P. A. Postigo, “Absorption features of the zero frequency mode in an ultra-thin slab,” Appl. Phys. Lett. 105, 231115 (2014).
[Crossref]

Cai, Z.

W. Tang, W. Yang, Y. Yang, C. Sun, and Z. Cai, “GaAs film for photon-enhanced thermionic emission solar harvesters,” Mater. Sci. Semicond. Proc. 25, 143–147 (2014).
[Crossref]

Caon, A.

C. Zimmermann, C. Nömayr, W. Köstler, A. Caon, E. Fernández, C. Baur, and H. Fiebrich, “Photovoltaic technology development for the BepiColombo mission,” in “Proceedings of the 9th European Space Power Conference”, L. Ouwehand (ESA, 2011).

Chen, G.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Chen, J.

S. Su, Y. Wang, T. Liu, G. Su, and J. Chen, “Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell,” Sol. Energ. Mat. Sol. Cells 121, 137–143 (2014).
[Crossref]

Dossou, K. B.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Dotor, M. L.

Dunlavy, D. J.

J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, “Ultralow recombination velocity at Ga0.5In0.5 P/GaAs heterointerfaces,” Appl. Phys. Lett. 55, 1208–1210 (1989).
[Crossref]

Fan, S.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Fatemi, N. S.

N. S. Fatemi, H. E. Pollard, H. Q. Hou, and P. R. Sharps, “Solar array trades between very high-efficiency multi-junction and si space solar cells,” in Proceedings of 28th IEEE PVSC (IEEE, 2000), pp. 1083–1086.

Fernández, E.

C. Zimmermann, C. Nömayr, W. Köstler, A. Caon, E. Fernández, C. Baur, and H. Fiebrich, “Photovoltaic technology development for the BepiColombo mission,” in “Proceedings of the 9th European Space Power Conference”, L. Ouwehand (ESA, 2011).

Fiebrich, H.

C. Zimmermann, C. Nömayr, W. Köstler, A. Caon, E. Fernández, C. Baur, and H. Fiebrich, “Photovoltaic technology development for the BepiColombo mission,” in “Proceedings of the 9th European Space Power Conference”, L. Ouwehand (ESA, 2011).

Goldsmid, H. J.

H. J. Goldsmid, Introduction to Thermoelectricity (Springer, 2010).
[Crossref]

Gonzalez, F. L.

Gordon, M. J.

Guina, M.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth–eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics Res. Appl. 21, 1158–1162 (2013).

Gyphtopoulos, E.

G. Hatsopoulos and E. Gyphtopoulos, Thermionic Energy Conversion: Theory, Technology and Application (MIT Press, 1979).

Han, S. E.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Hansen, O.

K. Reck and O. Hansen, “Thermodynamics of photon-enhanced thermionic emission solar cells,” Appl. Phys. Lett. 104, 023902 (2014).
[Crossref]

Hardin, B. E.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Harris, J. S.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

Hatsopoulos, G.

G. Hatsopoulos and E. Gyphtopoulos, Thermionic Energy Conversion: Theory, Technology and Application (MIT Press, 1979).

Hegedus, S.

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, Ltd., 2003).
[Crossref]

Henderson, L.

A. I. Shkrebtii, Z. A. Ibrahim, T. Teatro, W. Richter, M. J. Lee, and L. Henderson, “Theory of the temperature dependent dielectric function of semiconductors: from bulk to surfaces. Application to GaAs and Si,” Phys. Stat. Sol. B 247, 1881–1888 (2010).
[Crossref]

Heo, J.

J. W. Leem, J. SuYu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energ. Mat. Sol. Cells 127, 43–49 (2014).
[Crossref]

Hou, H. Q.

N. S. Fatemi, H. E. Pollard, H. Q. Hou, and P. R. Sharps, “Solar array trades between very high-efficiency multi-junction and si space solar cells,” in Proceedings of 28th IEEE PVSC (IEEE, 2000), pp. 1083–1086.

Howe, R. T.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

J.-H. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, “Optimal emitter-collector gap for thermionic energy converters,” Appl. Phys. Lett. 100, 173904 (2012).
[Crossref]

K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112, 094907 (2012).
[Crossref]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Ibrahim, Z. A.

A. I. Shkrebtii, Z. A. Ibrahim, T. Teatro, W. Richter, M. J. Lee, and L. Henderson, “Theory of the temperature dependent dielectric function of semiconductors: from bulk to surfaces. Application to GaAs and Si,” Phys. Stat. Sol. B 247, 1881–1888 (2010).
[Crossref]

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
[Crossref]

Ioffe, A. F.

A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, 1957).

Jean, J.

K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112, 094907 (2012).
[Crossref]

Ji, S.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref] [PubMed]

Johnson, S. G.

S. G. Johnson, “NLopt - AbInitio,”.

Jun, D.-H.

J. W. Leem, J. SuYu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energ. Mat. Sol. Cells 127, 43–49 (2014).
[Crossref]

Keyes, B.

J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, “Ultralow recombination velocity at Ga0.5In0.5 P/GaAs heterointerfaces,” Appl. Phys. Lett. 55, 1208–1210 (1989).
[Crossref]

Kibbler, A. E.

J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, “Ultralow recombination velocity at Ga0.5In0.5 P/GaAs heterointerfaces,” Appl. Phys. Lett. 55, 1208–1210 (1989).
[Crossref]

Kim, N.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref] [PubMed]

Köstler, W.

C. Zimmermann, C. Nömayr, W. Köstler, A. Caon, E. Fernández, C. Baur, and H. Fiebrich, “Photovoltaic technology development for the BepiColombo mission,” in “Proceedings of the 9th European Space Power Conference”, L. Ouwehand (ESA, 2011).

Kowalczewski, P.

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 135, 78–92 (2015).
[Crossref]

Kribus, A.

G. Segev, Y. Rosenwaks, and A. Kribus, “Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion,” Sol. Energ. Mat. Sol. Cells 140, 464–476 (2015).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters,” J. Appl. Phys. 114, 044505 (2013).
[Crossref]

G. Segev, A. Kribus, and Y. Rosenwaks, “High performance isothermal photo-thermionic solar converters,” Sol. Energ. Mat. Sol. Cells 113, 114–123 (2013).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Efficiency of photon enhanced thermionic emission solar converters,” Sol. Energ. Mat. Sol. Cells 107, 125–130 (2012).
[Crossref]

Kurtz, S. R.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt. 2, 303–311 (2012).
[Crossref]

Kuznetsov, V.

V. Kuznetsov, “Solar and heliospheric space missions,” Adv. Space Res. 55, 879–885 (2015).
[Crossref]

Langmuir, I.

I. Langmuir, “The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes,” Phys. Rev. 21, 419–435 (1923).
[Crossref]

Lee, J.-H.

J.-H. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, “Optimal emitter-collector gap for thermionic energy converters,” Appl. Phys. Lett. 100, 173904 (2012).
[Crossref]

Lee, M. J.

A. I. Shkrebtii, Z. A. Ibrahim, T. Teatro, W. Richter, M. J. Lee, and L. Henderson, “Theory of the temperature dependent dielectric function of semiconductors: from bulk to surfaces. Application to GaAs and Si,” Phys. Stat. Sol. B 247, 1881–1888 (2010).
[Crossref]

Lee, M. J. G.

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
[Crossref]

Leem, J. W.

J. W. Leem, J. SuYu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energ. Mat. Sol. Cells 127, 43–49 (2014).
[Crossref]

Lim, H.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref] [PubMed]

Liscidini, M.

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 135, 78–92 (2015).
[Crossref]

Liu, T.

S. Su, Y. Wang, T. Liu, G. Su, and J. Chen, “Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell,” Sol. Energ. Mat. Sol. Cells 121, 137–143 (2014).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Llorens, J. M.

J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Broadband antireflective nano-cones for tandem solar cells,” Opt. Express 23, A322–A336 (2015).
[Crossref] [PubMed]

J. M. Llorens, J. Buencuerpo, and P. A. Postigo, “Absorption features of the zero frequency mode in an ultra-thin slab,” Appl. Phys. Lett. 105, 231115 (2014).
[Crossref]

Luque, A.

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, Ltd., 2003).
[Crossref]

Martijn de Sterke, C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

McPhedran, R. C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Melosh, N. A.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

J.-H. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, “Optimal emitter-collector gap for thermionic energy converters,” Appl. Phys. Lett. 100, 173904 (2012).
[Crossref]

K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112, 094907 (2012).
[Crossref]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Miller, O. D.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt. 2, 303–311 (2012).
[Crossref]

Morse, D. E.

Narasimhan, V. K.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

Nguyen, T. B.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref] [PubMed]

Niemi, T.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth–eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics Res. Appl. 21, 1158–1162 (2013).

Nömayr, C.

C. Zimmermann, C. Nömayr, W. Köstler, A. Caon, E. Fernández, C. Baur, and H. Fiebrich, “Photovoltaic technology development for the BepiColombo mission,” in “Proceedings of the 9th European Space Power Conference”, L. Ouwehand (ESA, 2011).

Olson, J. M.

J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, “Ultralow recombination velocity at Ga0.5In0.5 P/GaAs heterointerfaces,” Appl. Phys. Lett. 55, 1208–1210 (1989).
[Crossref]

Park, W.-K.

J. W. Leem, J. SuYu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energ. Mat. Sol. Cells 127, 43–49 (2014).
[Crossref]

Pianetta, P.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Pollard, H. E.

N. S. Fatemi, H. E. Pollard, H. Q. Hou, and P. R. Sharps, “Solar array trades between very high-efficiency multi-junction and si space solar cells,” in Proceedings of 28th IEEE PVSC (IEEE, 2000), pp. 1083–1086.

Polojärvi, V.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth–eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics Res. Appl. 21, 1158–1162 (2013).

Postigo, P. A.

J. M. Llorens, J. Buencuerpo, and P. A. Postigo, “Absorption features of the zero frequency mode in an ultra-thin slab,” Appl. Phys. Lett. 105, 231115 (2014).
[Crossref]

Poulton, C. G.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Price, W. L.

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40, 333–348 (1983).
[Crossref]

Prunnila, M.

A. Varpula, K. Tappura, and M. Prunnila, “Si, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells,” Sol. Energ. Mat. Sol. Cells 134, 351–358 (2015).
[Crossref]

A. Varpula and M. Prunnila, “Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters,” J. Appl. Phys. 112, 044506 (2012).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Reck, K.

K. Reck and O. Hansen, “Thermodynamics of photon-enhanced thermionic emission solar cells,” Appl. Phys. Lett. 104, 023902 (2014).
[Crossref]

Richter, W.

A. I. Shkrebtii, Z. A. Ibrahim, T. Teatro, W. Richter, M. J. Lee, and L. Henderson, “Theory of the temperature dependent dielectric function of semiconductors: from bulk to surfaces. Application to GaAs and Si,” Phys. Stat. Sol. B 247, 1881–1888 (2010).
[Crossref]

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
[Crossref]

Riley, D. C.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Ripalda, J. M.

Rosenthal, S. J.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Rosenwaks, Y.

G. Segev, Y. Rosenwaks, and A. Kribus, “Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion,” Sol. Energ. Mat. Sol. Cells 140, 464–476 (2015).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters,” J. Appl. Phys. 114, 044505 (2013).
[Crossref]

G. Segev, A. Kribus, and Y. Rosenwaks, “High performance isothermal photo-thermionic solar converters,” Sol. Energ. Mat. Sol. Cells 113, 114–123 (2013).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Efficiency of photon enhanced thermionic emission solar converters,” Sol. Energ. Mat. Sol. Cells 107, 125–130 (2012).
[Crossref]

Sahasrabuddhe, K.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112, 094907 (2012).
[Crossref]

Salmi, J.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth–eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics Res. Appl. 21, 1158–1162 (2013).

Sarmiento, T.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

Schmitt, F.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Schwede, J. W.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112, 094907 (2012).
[Crossref]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Segev, G.

G. Segev, Y. Rosenwaks, and A. Kribus, “Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion,” Sol. Energ. Mat. Sol. Cells 140, 464–476 (2015).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters,” J. Appl. Phys. 114, 044505 (2013).
[Crossref]

G. Segev, A. Kribus, and Y. Rosenwaks, “High performance isothermal photo-thermionic solar converters,” Sol. Energ. Mat. Sol. Cells 113, 114–123 (2013).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Efficiency of photon enhanced thermionic emission solar converters,” Sol. Energ. Mat. Sol. Cells 107, 125–130 (2012).
[Crossref]

Sharps, P. R.

N. S. Fatemi, H. E. Pollard, H. Q. Hou, and P. R. Sharps, “Solar array trades between very high-efficiency multi-junction and si space solar cells,” in Proceedings of 28th IEEE PVSC (IEEE, 2000), pp. 1083–1086.

Shen, Z.-X.

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112, 094907 (2012).
[Crossref]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Shkrebtii, A. I.

A. I. Shkrebtii, Z. A. Ibrahim, T. Teatro, W. Richter, M. J. Lee, and L. Henderson, “Theory of the temperature dependent dielectric function of semiconductors: from bulk to surfaces. Application to GaAs and Si,” Phys. Stat. Sol. B 247, 1881–1888 (2010).
[Crossref]

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Song, K.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref] [PubMed]

Sturmberg, B. C. P.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

Su, G.

S. Su, Y. Wang, T. Liu, G. Su, and J. Chen, “Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell,” Sol. Energ. Mat. Sol. Cells 121, 137–143 (2014).
[Crossref]

Su, S.

S. Su, Y. Wang, T. Liu, G. Su, and J. Chen, “Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell,” Sol. Energ. Mat. Sol. Cells 121, 137–143 (2014).
[Crossref]

Sun, C.

W. Tang, W. Yang, Y. Yang, C. Sun, and Z. Cai, “GaAs film for photon-enhanced thermionic emission solar harvesters,” Mater. Sci. Semicond. Proc. 25, 143–147 (2014).
[Crossref]

Y. Yang, W. Yang, W. Tang, and C. Sun, “High-temperature solar cell for concentrated solar-power hybrid systems,” Appl. Phys. Lett. 103, 083902 (2013).
[Crossref]

Sun, Y.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

SuYu, J.

J. W. Leem, J. SuYu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energ. Mat. Sol. Cells 127, 43–49 (2014).
[Crossref]

Sze, S.

S. Sze, Physics of Semiconductor Devices (Wiley, 1981).

Tang, W.

W. Tang, W. Yang, Y. Yang, C. Sun, and Z. Cai, “GaAs film for photon-enhanced thermionic emission solar harvesters,” Mater. Sci. Semicond. Proc. 25, 143–147 (2014).
[Crossref]

Y. Yang, W. Yang, W. Tang, and C. Sun, “High-temperature solar cell for concentrated solar-power hybrid systems,” Appl. Phys. Lett. 103, 083902 (2013).
[Crossref]

Tappura, K.

A. Varpula, K. Tappura, and M. Prunnila, “Si, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells,” Sol. Energ. Mat. Sol. Cells 134, 351–358 (2015).
[Crossref]

Teatro, T.

A. I. Shkrebtii, Z. A. Ibrahim, T. Teatro, W. Richter, M. J. Lee, and L. Henderson, “Theory of the temperature dependent dielectric function of semiconductors: from bulk to surfaces. Application to GaAs and Si,” Phys. Stat. Sol. B 247, 1881–1888 (2010).
[Crossref]

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
[Crossref]

Tommila, J.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth–eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics Res. Appl. 21, 1158–1162 (2013).

Trepk, T.

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
[Crossref]

Tukiainen, A.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth–eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics Res. Appl. 21, 1158–1162 (2013).

Varpula, A.

A. Varpula, K. Tappura, and M. Prunnila, “Si, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells,” Sol. Energ. Mat. Sol. Cells 134, 351–358 (2015).
[Crossref]

A. Varpula and M. Prunnila, “Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters,” J. Appl. Phys. 112, 044506 (2012).
[Crossref]

Vynck, K.

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
[Crossref]

Wang, Y.

S. Su, Y. Wang, T. Liu, G. Su, and J. Chen, “Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell,” Sol. Energ. Mat. Sol. Cells 121, 137–143 (2014).
[Crossref]

Yablonovitch, E.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt. 2, 303–311 (2012).
[Crossref]

Yang, W.

W. Tang, W. Yang, Y. Yang, C. Sun, and Z. Cai, “GaAs film for photon-enhanced thermionic emission solar harvesters,” Mater. Sci. Semicond. Proc. 25, 143–147 (2014).
[Crossref]

Y. Yang, W. Yang, W. Tang, and C. Sun, “High-temperature solar cell for concentrated solar-power hybrid systems,” Appl. Phys. Lett. 103, 083902 (2013).
[Crossref]

Yang, Y.

W. Tang, W. Yang, Y. Yang, C. Sun, and Z. Cai, “GaAs film for photon-enhanced thermionic emission solar harvesters,” Mater. Sci. Semicond. Proc. 25, 143–147 (2014).
[Crossref]

Y. Yang, W. Yang, W. Tang, and C. Sun, “High-temperature solar cell for concentrated solar-power hybrid systems,” Appl. Phys. Lett. 103, 083902 (2013).
[Crossref]

Zettler, T.

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
[Crossref]

Zimmermann, C.

C. Zimmermann, C. Nömayr, W. Köstler, A. Caon, E. Fernández, C. Baur, and H. Fiebrich, “Photovoltaic technology development for the BepiColombo mission,” in “Proceedings of the 9th European Space Power Conference”, L. Ouwehand (ESA, 2011).

ACS Appl. Mater. Interfaces (1)

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5, 10731–10737 (2013).
[Crossref] [PubMed]

Adv. Space Res. (1)

V. Kuznetsov, “Solar and heliospheric space missions,” Adv. Space Res. 55, 879–885 (2015).
[Crossref]

Appl. Phys. Lett. (6)

K. Reck and O. Hansen, “Thermodynamics of photon-enhanced thermionic emission solar cells,” Appl. Phys. Lett. 104, 023902 (2014).
[Crossref]

J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, “Ultralow recombination velocity at Ga0.5In0.5 P/GaAs heterointerfaces,” Appl. Phys. Lett. 55, 1208–1210 (1989).
[Crossref]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[Crossref]

J. M. Llorens, J. Buencuerpo, and P. A. Postigo, “Absorption features of the zero frequency mode in an ultra-thin slab,” Appl. Phys. Lett. 105, 231115 (2014).
[Crossref]

J.-H. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, “Optimal emitter-collector gap for thermionic energy converters,” Appl. Phys. Lett. 100, 173904 (2012).
[Crossref]

Y. Yang, W. Yang, W. Tang, and C. Sun, “High-temperature solar cell for concentrated solar-power hybrid systems,” Appl. Phys. Lett. 103, 083902 (2013).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

IEEE J. Photovolt. (1)

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt. 2, 303–311 (2012).
[Crossref]

J. Appl. Phys. (4)

G. Segev, Y. Rosenwaks, and A. Kribus, “Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters,” J. Appl. Phys. 114, 044505 (2013).
[Crossref]

K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112, 094907 (2012).
[Crossref]

A. Varpula and M. Prunnila, “Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters,” J. Appl. Phys. 112, 044506 (2012).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

J. Optim. Theory Appl. (1)

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40, 333–348 (1983).
[Crossref]

Mater. Sci. Semicond. Proc. (1)

W. Tang, W. Yang, Y. Yang, C. Sun, and Z. Cai, “GaAs film for photon-enhanced thermionic emission solar harvesters,” Mater. Sci. Semicond. Proc. 25, 143–147 (2014).
[Crossref]

Nano Lett. (1)

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9, 762–767 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

I. Langmuir, “The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes,” Phys. Rev. 21, 419–435 (1923).
[Crossref]

Phys. Rev. B (2)

S. Adachi, “Excitonic effects in the optical spectrum of GaAs,” Phys. Rev. B 41, 1003–1013 (1990).
[Crossref]

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter, T. Trepk, and T. Zettler, “Temperature dependence of the optical response: Application to bulk GaAs using first-principles molecular dynamics simulations,” Phys. Rev. B 77, 125218 (2008).
[Crossref]

Phys. Stat. Sol. B (1)

A. I. Shkrebtii, Z. A. Ibrahim, T. Teatro, W. Richter, M. J. Lee, and L. Henderson, “Theory of the temperature dependent dielectric function of semiconductors: from bulk to surfaces. Application to GaAs and Si,” Phys. Stat. Sol. B 247, 1881–1888 (2010).
[Crossref]

Prog. Photovoltaics Res. Appl. (2)

S. A. Boden and D. M. Bagnall, “Optimization of moth–eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl. 18, 195–203 (2010).
[Crossref]

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth–eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics Res. Appl. 21, 1158–1162 (2013).

Sol. Energ. Mat. Sol. Cells (7)

J. W. Leem, J. SuYu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energ. Mat. Sol. Cells 127, 43–49 (2014).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Efficiency of photon enhanced thermionic emission solar converters,” Sol. Energ. Mat. Sol. Cells 107, 125–130 (2012).
[Crossref]

G. Segev, Y. Rosenwaks, and A. Kribus, “Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion,” Sol. Energ. Mat. Sol. Cells 140, 464–476 (2015).
[Crossref]

A. Varpula, K. Tappura, and M. Prunnila, “Si, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells,” Sol. Energ. Mat. Sol. Cells 134, 351–358 (2015).
[Crossref]

S. Su, Y. Wang, T. Liu, G. Su, and J. Chen, “Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell,” Sol. Energ. Mat. Sol. Cells 121, 137–143 (2014).
[Crossref]

G. Segev, A. Kribus, and Y. Rosenwaks, “High performance isothermal photo-thermionic solar converters,” Sol. Energ. Mat. Sol. Cells 113, 114–123 (2013).
[Crossref]

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 135, 78–92 (2015).
[Crossref]

Other (10)

S. Sze, Physics of Semiconductor Devices (Wiley, 1981).

A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, 1957).

H. J. Goldsmid, Introduction to Thermoelectricity (Springer, 2010).
[Crossref]

G. Hatsopoulos and E. Gyphtopoulos, Thermionic Energy Conversion: Theory, Technology and Application (MIT Press, 1979).

Wolfram Research, Inc., “Mathematica 10.0,” (2014).

C. Zimmermann, C. Nömayr, W. Köstler, A. Caon, E. Fernández, C. Baur, and H. Fiebrich, “Photovoltaic technology development for the BepiColombo mission,” in “Proceedings of the 9th European Space Power Conference”, L. Ouwehand (ESA, 2011).

S. G. Johnson, “NLopt - AbInitio,”.

S. Adachi, Properties of Group–IV, III–V and II–VI Semiconductors (Wiley, 2005).

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, Ltd., 2003).
[Crossref]

N. S. Fatemi, H. E. Pollard, H. Q. Hou, and P. R. Sharps, “Solar array trades between very high-efficiency multi-junction and si space solar cells,” in Proceedings of 28th IEEE PVSC (IEEE, 2000), pp. 1083–1086.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Depiction of the different parts of a PETE device. Light impinges from the left side on the light-trapping structure. The band structure of the cathode and anode is depicted for a voltage at the flat-band condition. The red curve in the vacuum gap represents the charge-cloud electrostatic potential.

Fig. 2
Fig. 2

Sketch of the four structures proposed for light-trapping purposes. Each color corresponds to a different material.

Fig. 3
Fig. 3

(a) Absorption in the cathode for the S0 (red) and S1 (blue) structures. The area between the dashed and the continuous line represent the losses due to the absorption of the TiO2. The hatched area correspond to the losses of the S0 and S1 structures respectively. (b) Absorption in the cathode for the S2 (purple) and S3 (gray) structures. The area between the dashed and the continuous lines represents the losses due to the absorption of the TiO2. The hatched area correspond to the losses of the S2 and S3 structures respectively. The vertical dashed line correspond to the gap of the TiO2 at 300 K

Fig. 4
Fig. 4

(a) Evolution of the power output with the thickness of the cathode for the four systems simulated, S0-S3. A Beer-Lambert like cathode and a Lambertian like cathode, are included as different physical limits of the absorption. The temperature is set to 700 K. (b) Evolution of the power output with the temperature of the cathode for the four systems simulated. A Beer-Lambert like cathode of thickness 350 nm and a Lambertian like cathode, thickness of 30 nm are included as different physical limits of the absorption.

Fig. 5
Fig. 5

Evolution of the operating voltage with the thickness (a) and temperature (b) of the BLA (red) and the LA (blue). The dashed line corresponds to Vfb. Evolution of the electron density at the emission surface with the thickness (c) and temperature (d).

Fig. 6
Fig. 6

Evolution of the real (a) and imaginary (b) part of the refractive index with the temperature. The color gradient from red to blue corresponds a temperature gradient from to 300 K to 1000 K.

Fig. 7
Fig. 7

Change in the optical absorption as a function of the temperature for the optimal structures S0 (a), S2 (b) and S3 (c) defined in Table 2. The dependence of the complex refractive index is depicted in Fig. 6. The color gradient from red to blue corresponds a temperature gradient from to 300 K to 1000 K. (d) The ultimate efficiency as a function of the temperature for the optimized structures (S0 gray line, S1 blue line, S2 red line and S3 black line).

Fig. 8
Fig. 8

Evolution of the JV curve (a) and ϕe (b) of the optimal S3 PETE as a function of the vacuum gap distance. (c) Total efficiency as a function of the vacuum gap distance for three different concentration factors: 10 suns (black line), 100 suns (red line) and 1000 suns (blue line).

Tables (2)

Tables Icon

Table 1 Parameters and conditions used in the optimization. Parameters marked as are extracted from [32]

Tables Icon

Table 2 Optimal dimensions of the PC ARCs and their corresponding efficiencies and ultimate efficiencies.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

J C = A C * T C 2 exp ( Δ E C k B T C ) n n eq , Δ E C = ϕ C + Θ ( V V fb ) e ( V V fb ) ,
J A = A A * T A 2 exp ( Δ E A k B T A ) , Δ E A = ϕ A + Θ ( V fb V ) e ( V fb V ) .
D d 2 Δ n d x 2 = Δ n τ G ( x ) ,
G ( x ) = E g d E Φ AM 0 E ( 1 S 0 d S x d x ) ,
d Δ n d x | x = 0 = R S 0 D Δ n ( 0 ) ,
d Δ n d x | x = W = R S W D Δ n ( W ) J q D ,
η * = J ( V op ) V op P inc
P inc J [ ϕ C + Θ ( V op V fb ) ( V op V fb ) ] = P 0 + P IR .
S ( x ) BLA = exp [ α ( E ) x ] ,
S ( x ) LA = 1 4 n 2 α ( E ) x + 1 .

Metrics