Abstract

The radiative limit model, based on the black body theory extended to semiconductors and the flow equilibrium in the cell, has been adapted for GaxIn1-xAs thermophotovoltaic devices. The impact of the thermal emitter temperature and the incident power density on the performance of cells for different Ga/In ratios has been investigated. The effects of the thickness of the cell and of light trapping have been investigated as well. A theoretical maximum efficiency of 24.2% has been calculated for a dislocation-free 5-μm-thick cell with a 0.43 eV bandgap illuminated by a source at 1800 K. The model also takes into account Auger recombinations and threading dislocations-related Shockley-Read-Hall recombinations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter

David N. Woolf, Emil A. Kadlec, Don Bethke, Albert D. Grine, John J. Nogan, Jeffrey G. Cederberg, D. Bruce Burckel, Ting Shan Luk, Eric A. Shaner, and Joel M. Hensley
Optica 5(2) 213-218 (2018)

Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems

Ognjen Ilic, Marinko Jablan, John D. Joannopoulos, Ivan Celanovic, and Marin Soljačić
Opt. Express 20(S3) A366-A384 (2012)

Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems

Yi Xiang Yeng, Walker R. Chan, Veronika Rinnerbauer, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic
Opt. Express 21(S6) A1035-A1051 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3(2), 77–184 (1999).
  2. R. S. Tuley and R. J. Nicholas, “Band gap dependent thermophotovoltaic device performance using the InGaAs and InGaAsP material system,” J. Appl. Phys. 108(8), 084516 (2010).
    [Crossref]
  3. D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
    [Crossref]
  4. M. W. Wanlass, J. S. Ward, K. A. Emery, M. M. Al-Jassim, K. M. Jones, and T. J. Coutts, “GaxIn1-xAs thermophotovoltaic converters,” Sol. Energy Mater. Sol. Cells 41-42, 405–417 (1996).
    [Crossref]
  5. S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
    [Crossref]
  6. M. K. Hudait, C. L. Andre, M. N. Kwon, Palmisiano, and S. A. Ringel, “High-performance In0.53Ga0.47As thermophotovoltaic devices grown by solid source molecular beam epitaxy,” IEEE Electron Device Lett. 23, 697–699 (2003).
  7. M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
    [Crossref]
  8. M. K. Hudait, “Comparison of mixed anion, InAsyP1−y and mixed cation InxAl1−xAs metamorphic buffers grown by molecular beam epitaxy on (100) InP substrates,” J. Appl. Phys. 95(8), 3952 (2004).
    [Crossref]
  9. M. K. Hudait, Y. Lin, M. N. Palmisiano, and S. A. Ringel, “0.6-eV bandgap In0.69Ga0.31As thermophotovoltaic devices grown on InAsyP1-y step-graded buffers by molecular beam epitaxy,” IEEE Electron Device Lett. 24(9), 538540 (2003).
    [Crossref]
  10. B. Wernsman, T. Bird, M. Sheldon, S. Link, and R. Wehrer, “Molecular beam epitaxy grown 0.6 eV n/p/n InPAs/InGaAs/InAlAs double heterostructure thermophotovoltaic devices using carbon as the p-type dopant,” J. Vac. Sci. Technol. B 24(3), 1626 (2006).
    [Crossref]
  11. J. Cederberg, J. Blaich, G. Girard, S. Lee, D. Nelson, and C. Murray, “The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers,” J. Cryst. Growth 310(15), 34533458 (2008).
    [Crossref]
  12. M. K. Hudait, M. Brenner, and S. A. Ringel, “Metamorphic In0.7Al0.3AsIn0.69Ga0.31As thermophotovoltaic devices grown on graded InAsyP1− y buffers by molecular beam epitaxy,” Solid-State Electron. 53(1), 102–106 (2009).
    [Crossref]
  13. R. Nahory, M. Pollack, W. Johnston, and R. Barns, “Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
    [Crossref]
  14. O. Miller, E. Yablonovitch, and S. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
    [Crossref]
  15. J. Dixon and J. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560–1566 (1961).
    [Crossref]
  16. P. Würfel, “The chemical potential of radiation,” J. Phys. C Solid State Phys. 15(18), 3967–3985 (1982).
    [Crossref]
  17. S. S. Li, Semiconductor Physical Electronics (Springer, 2005), Chap. 11.
  18. E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
    [Crossref]
  19. M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 58(9), 3601 (1985).
    [Crossref]
  20. “Basic Parameters at 300K, Band structure and carrier concentration and Electrical Properties of GaxIn1-xAs,” (Ioffe Physical Technical Institute, 2015), http://www.ioffe.ru/SVA/NSM/Semicond/GaInAs/ accessed on March 5th 2015.
  21. “Band structure and carrier concentration of GaxIn1-xAsyP1-y,” (Ioffe Physical Technical Institute 2015), http://www.ioffe.ru/SVA/NSM/Semicond/GaInAs/ accessed on March 5th 2015.
  22. “Band structure and carrier concentration and Electrical Properties of GaAs,” (Ioffe Physical Technical Institute 2015), http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/ accessed on March 5th 2015.
  23. “Band structure and carrier concentration and Electrical Properties of InAs,” (Ioffe Physical Technical Institute 2015), http://www.ioffe.ru/SVA/NSM/Semicond/InAs/ accessed on March 5th 2015.
  24. T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
    [Crossref]
  25. S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, “Auger recombination in bulk and quantum well InGaAs,” Appl. Phys. Lett. 56(10), 913 (1990).
    [Crossref]

2012 (1)

O. Miller, E. Yablonovitch, and S. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

2010 (1)

R. S. Tuley and R. J. Nicholas, “Band gap dependent thermophotovoltaic device performance using the InGaAs and InGaAsP material system,” J. Appl. Phys. 108(8), 084516 (2010).
[Crossref]

2009 (1)

M. K. Hudait, M. Brenner, and S. A. Ringel, “Metamorphic In0.7Al0.3AsIn0.69Ga0.31As thermophotovoltaic devices grown on graded InAsyP1− y buffers by molecular beam epitaxy,” Solid-State Electron. 53(1), 102–106 (2009).
[Crossref]

2008 (1)

J. Cederberg, J. Blaich, G. Girard, S. Lee, D. Nelson, and C. Murray, “The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers,” J. Cryst. Growth 310(15), 34533458 (2008).
[Crossref]

2006 (1)

B. Wernsman, T. Bird, M. Sheldon, S. Link, and R. Wehrer, “Molecular beam epitaxy grown 0.6 eV n/p/n InPAs/InGaAs/InAlAs double heterostructure thermophotovoltaic devices using carbon as the p-type dopant,” J. Vac. Sci. Technol. B 24(3), 1626 (2006).
[Crossref]

2004 (1)

M. K. Hudait, “Comparison of mixed anion, InAsyP1−y and mixed cation InxAl1−xAs metamorphic buffers grown by molecular beam epitaxy on (100) InP substrates,” J. Appl. Phys. 95(8), 3952 (2004).
[Crossref]

2003 (4)

M. K. Hudait, Y. Lin, M. N. Palmisiano, and S. A. Ringel, “0.6-eV bandgap In0.69Ga0.31As thermophotovoltaic devices grown on InAsyP1-y step-graded buffers by molecular beam epitaxy,” IEEE Electron Device Lett. 24(9), 538540 (2003).
[Crossref]

S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
[Crossref]

M. K. Hudait, C. L. Andre, M. N. Kwon, Palmisiano, and S. A. Ringel, “High-performance In0.53Ga0.47As thermophotovoltaic devices grown by solid source molecular beam epitaxy,” IEEE Electron Device Lett. 23, 697–699 (2003).

M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
[Crossref]

1999 (1)

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3(2), 77–184 (1999).

1996 (1)

M. W. Wanlass, J. S. Ward, K. A. Emery, M. M. Al-Jassim, K. M. Jones, and T. J. Coutts, “GaxIn1-xAs thermophotovoltaic converters,” Sol. Energy Mater. Sol. Cells 41-42, 405–417 (1996).
[Crossref]

1994 (1)

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

1990 (1)

S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, “Auger recombination in bulk and quantum well InGaAs,” Appl. Phys. Lett. 56(10), 913 (1990).
[Crossref]

1985 (1)

M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 58(9), 3601 (1985).
[Crossref]

1984 (1)

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[Crossref]

1982 (2)

P. Würfel, “The chemical potential of radiation,” J. Phys. C Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

1978 (1)

R. Nahory, M. Pollack, W. Johnston, and R. Barns, “Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

1961 (1)

J. Dixon and J. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560–1566 (1961).
[Crossref]

Ahrenkiel, P.

S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
[Crossref]

Al-Jassim, M. M.

M. W. Wanlass, J. S. Ward, K. A. Emery, M. M. Al-Jassim, K. M. Jones, and T. J. Coutts, “GaxIn1-xAs thermophotovoltaic converters,” Sol. Energy Mater. Sol. Cells 41-42, 405–417 (1996).
[Crossref]

Amano, C.

M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 58(9), 3601 (1985).
[Crossref]

Andre, C. L.

M. K. Hudait, C. L. Andre, M. N. Kwon, Palmisiano, and S. A. Ringel, “High-performance In0.53Ga0.47As thermophotovoltaic devices grown by solid source molecular beam epitaxy,” IEEE Electron Device Lett. 23, 697–699 (2003).

Barns, R.

R. Nahory, M. Pollack, W. Johnston, and R. Barns, “Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

Bird, T.

B. Wernsman, T. Bird, M. Sheldon, S. Link, and R. Wehrer, “Molecular beam epitaxy grown 0.6 eV n/p/n InPAs/InGaAs/InAlAs double heterostructure thermophotovoltaic devices using carbon as the p-type dopant,” J. Vac. Sci. Technol. B 24(3), 1626 (2006).
[Crossref]

Blaich, J.

J. Cederberg, J. Blaich, G. Girard, S. Lee, D. Nelson, and C. Murray, “The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers,” J. Cryst. Growth 310(15), 34533458 (2008).
[Crossref]

Brenner, M.

M. K. Hudait, M. Brenner, and S. A. Ringel, “Metamorphic In0.7Al0.3AsIn0.69Ga0.31As thermophotovoltaic devices grown on graded InAsyP1− y buffers by molecular beam epitaxy,” Solid-State Electron. 53(1), 102–106 (2009).
[Crossref]

Brinker, D. J.

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

Brooks, B.

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[Crossref]

Cederberg, J.

J. Cederberg, J. Blaich, G. Girard, S. Lee, D. Nelson, and C. Murray, “The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers,” J. Cryst. Growth 310(15), 34533458 (2008).
[Crossref]

Cody, G.

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[Crossref]

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

Coutts, T. J.

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3(2), 77–184 (1999).

M. W. Wanlass, J. S. Ward, K. A. Emery, M. M. Al-Jassim, K. M. Jones, and T. J. Coutts, “GaxIn1-xAs thermophotovoltaic converters,” Sol. Energy Mater. Sol. Cells 41-42, 405–417 (1996).
[Crossref]

Dixon, J.

J. Dixon and J. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560–1566 (1961).
[Crossref]

Ellis, J.

J. Dixon and J. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560–1566 (1961).
[Crossref]

Emery, K. A.

M. W. Wanlass, J. S. Ward, K. A. Emery, M. M. Al-Jassim, K. M. Jones, and T. J. Coutts, “GaxIn1-xAs thermophotovoltaic converters,” Sol. Energy Mater. Sol. Cells 41-42, 405–417 (1996).
[Crossref]

Fatemi, N. S.

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

Fauer, M.

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

Fuchs, G.

S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, “Auger recombination in bulk and quantum well InGaAs,” Appl. Phys. Lett. 56(10), 913 (1990).
[Crossref]

Girard, G.

J. Cederberg, J. Blaich, G. Girard, S. Lee, D. Nelson, and C. Murray, “The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers,” J. Cryst. Growth 310(15), 34533458 (2008).
[Crossref]

Hangleiter, A.

S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, “Auger recombination in bulk and quantum well InGaAs,” Appl. Phys. Lett. 56(10), 913 (1990).
[Crossref]

Hausser, S.

S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, “Auger recombination in bulk and quantum well InGaAs,” Appl. Phys. Lett. 56(10), 913 (1990).
[Crossref]

Heller, E. R.

M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
[Crossref]

Hoffman, R. W.

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

Hudait, M. K.

M. K. Hudait, M. Brenner, and S. A. Ringel, “Metamorphic In0.7Al0.3AsIn0.69Ga0.31As thermophotovoltaic devices grown on graded InAsyP1− y buffers by molecular beam epitaxy,” Solid-State Electron. 53(1), 102–106 (2009).
[Crossref]

M. K. Hudait, “Comparison of mixed anion, InAsyP1−y and mixed cation InxAl1−xAs metamorphic buffers grown by molecular beam epitaxy on (100) InP substrates,” J. Appl. Phys. 95(8), 3952 (2004).
[Crossref]

M. K. Hudait, Y. Lin, M. N. Palmisiano, and S. A. Ringel, “0.6-eV bandgap In0.69Ga0.31As thermophotovoltaic devices grown on InAsyP1-y step-graded buffers by molecular beam epitaxy,” IEEE Electron Device Lett. 24(9), 538540 (2003).
[Crossref]

M. K. Hudait, C. L. Andre, M. N. Kwon, Palmisiano, and S. A. Ringel, “High-performance In0.53Ga0.47As thermophotovoltaic devices grown by solid source molecular beam epitaxy,” IEEE Electron Device Lett. 23, 697–699 (2003).

M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
[Crossref]

Jain, R. K.

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

Jenkins, P. P.

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

Johnston, W.

R. Nahory, M. Pollack, W. Johnston, and R. Barns, “Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

Jones, K. M.

M. W. Wanlass, J. S. Ward, K. A. Emery, M. M. Al-Jassim, K. M. Jones, and T. J. Coutts, “GaxIn1-xAs thermophotovoltaic converters,” Sol. Energy Mater. Sol. Cells 41-42, 405–417 (1996).
[Crossref]

Kurtz, S.

O. Miller, E. Yablonovitch, and S. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

Kwon, M. N.

M. K. Hudait, C. L. Andre, M. N. Kwon, Palmisiano, and S. A. Ringel, “High-performance In0.53Ga0.47As thermophotovoltaic devices grown by solid source molecular beam epitaxy,” IEEE Electron Device Lett. 23, 697–699 (2003).

Lee, S.

J. Cederberg, J. Blaich, G. Girard, S. Lee, D. Nelson, and C. Murray, “The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers,” J. Cryst. Growth 310(15), 34533458 (2008).
[Crossref]

Lin, Y.

M. K. Hudait, Y. Lin, M. N. Palmisiano, and S. A. Ringel, “0.6-eV bandgap In0.69Ga0.31As thermophotovoltaic devices grown on InAsyP1-y step-graded buffers by molecular beam epitaxy,” IEEE Electron Device Lett. 24(9), 538540 (2003).
[Crossref]

M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
[Crossref]

Link, S.

B. Wernsman, T. Bird, M. Sheldon, S. Link, and R. Wehrer, “Molecular beam epitaxy grown 0.6 eV n/p/n InPAs/InGaAs/InAlAs double heterostructure thermophotovoltaic devices using carbon as the p-type dopant,” J. Vac. Sci. Technol. B 24(3), 1626 (2006).
[Crossref]

Lowe, R.

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

Messham, R.

S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
[Crossref]

Miller, O.

O. Miller, E. Yablonovitch, and S. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

Murray, C.

J. Cederberg, J. Blaich, G. Girard, S. Lee, D. Nelson, and C. Murray, “The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers,” J. Cryst. Growth 310(15), 34533458 (2008).
[Crossref]

S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
[Crossref]

Murray, S.

S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
[Crossref]

Nahory, R.

R. Nahory, M. Pollack, W. Johnston, and R. Barns, “Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

Nelson, D.

J. Cederberg, J. Blaich, G. Girard, S. Lee, D. Nelson, and C. Murray, “The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers,” J. Cryst. Growth 310(15), 34533458 (2008).
[Crossref]

Newman, F.

S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
[Crossref]

Nicholas, R. J.

R. S. Tuley and R. J. Nicholas, “Band gap dependent thermophotovoltaic device performance using the InGaAs and InGaAsP material system,” J. Appl. Phys. 108(8), 084516 (2010).
[Crossref]

Palmisiano,

M. K. Hudait, C. L. Andre, M. N. Kwon, Palmisiano, and S. A. Ringel, “High-performance In0.53Ga0.47As thermophotovoltaic devices grown by solid source molecular beam epitaxy,” IEEE Electron Device Lett. 23, 697–699 (2003).

Palmisiano, M. N.

M. K. Hudait, Y. Lin, M. N. Palmisiano, and S. A. Ringel, “0.6-eV bandgap In0.69Ga0.31As thermophotovoltaic devices grown on InAsyP1-y step-graded buffers by molecular beam epitaxy,” IEEE Electron Device Lett. 24(9), 538540 (2003).
[Crossref]

Pelz, J. P.

M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
[Crossref]

Pollack, M.

R. Nahory, M. Pollack, W. Johnston, and R. Barns, “Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

Ringel, S. A.

M. K. Hudait, M. Brenner, and S. A. Ringel, “Metamorphic In0.7Al0.3AsIn0.69Ga0.31As thermophotovoltaic devices grown on graded InAsyP1− y buffers by molecular beam epitaxy,” Solid-State Electron. 53(1), 102–106 (2009).
[Crossref]

M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
[Crossref]

M. K. Hudait, Y. Lin, M. N. Palmisiano, and S. A. Ringel, “0.6-eV bandgap In0.69Ga0.31As thermophotovoltaic devices grown on InAsyP1-y step-graded buffers by molecular beam epitaxy,” IEEE Electron Device Lett. 24(9), 538540 (2003).
[Crossref]

M. K. Hudait, C. L. Andre, M. N. Kwon, Palmisiano, and S. A. Ringel, “High-performance In0.53Ga0.47As thermophotovoltaic devices grown by solid source molecular beam epitaxy,” IEEE Electron Device Lett. 23, 697–699 (2003).

Scheiman, D.

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

Sheldon, M.

B. Wernsman, T. Bird, M. Sheldon, S. Link, and R. Wehrer, “Molecular beam epitaxy grown 0.6 eV n/p/n InPAs/InGaAs/InAlAs double heterostructure thermophotovoltaic devices using carbon as the p-type dopant,” J. Vac. Sci. Technol. B 24(3), 1626 (2006).
[Crossref]

Siergiej, R.

S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
[Crossref]

Speck, J. S.

M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
[Crossref]

Streubel, K.

S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, “Auger recombination in bulk and quantum well InGaAs,” Appl. Phys. Lett. 56(10), 913 (1990).
[Crossref]

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[Crossref]

Tivarus, C. A.

M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
[Crossref]

Tsang, W. T.

S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, “Auger recombination in bulk and quantum well InGaAs,” Appl. Phys. Lett. 56(10), 913 (1990).
[Crossref]

Tuley, R. S.

R. S. Tuley and R. J. Nicholas, “Band gap dependent thermophotovoltaic device performance using the InGaAs and InGaAsP material system,” J. Appl. Phys. 108(8), 084516 (2010).
[Crossref]

Wanlass, M.

S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
[Crossref]

Wanlass, M. W.

M. W. Wanlass, J. S. Ward, K. A. Emery, M. M. Al-Jassim, K. M. Jones, and T. J. Coutts, “GaxIn1-xAs thermophotovoltaic converters,” Sol. Energy Mater. Sol. Cells 41-42, 405–417 (1996).
[Crossref]

Ward, J. S.

M. W. Wanlass, J. S. Ward, K. A. Emery, M. M. Al-Jassim, K. M. Jones, and T. J. Coutts, “GaxIn1-xAs thermophotovoltaic converters,” Sol. Energy Mater. Sol. Cells 41-42, 405–417 (1996).
[Crossref]

Wehrer, R.

B. Wernsman, T. Bird, M. Sheldon, S. Link, and R. Wehrer, “Molecular beam epitaxy grown 0.6 eV n/p/n InPAs/InGaAs/InAlAs double heterostructure thermophotovoltaic devices using carbon as the p-type dopant,” J. Vac. Sci. Technol. B 24(3), 1626 (2006).
[Crossref]

Wernsman, B.

B. Wernsman, T. Bird, M. Sheldon, S. Link, and R. Wehrer, “Molecular beam epitaxy grown 0.6 eV n/p/n InPAs/InGaAs/InAlAs double heterostructure thermophotovoltaic devices using carbon as the p-type dopant,” J. Vac. Sci. Technol. B 24(3), 1626 (2006).
[Crossref]

Wilt, D.

S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
[Crossref]

Wilt, D. M.

M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
[Crossref]

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

Würfel, P.

P. Würfel, “The chemical potential of radiation,” J. Phys. C Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

Yablonovitch, E.

O. Miller, E. Yablonovitch, and S. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[Crossref]

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

Yamaguchi, M.

M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 58(9), 3601 (1985).
[Crossref]

Appl. Phys. Lett. (4)

D. M. Wilt, N. S. Fatemi, R. W. Hoffman, P. P. Jenkins, D. J. Brinker, D. Scheiman, R. Lowe, M. Fauer, and R. K. Jain, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems,” Appl. Phys. Lett. 64(18), 2415–2417 (1994).
[Crossref]

M. K. Hudait, Y. Lin, D. M. Wilt, J. S. Speck, C. A. Tivarus, E. R. Heller, J. P. Pelz, and S. A. Ringel, “High-quality InAsyP1−y step-graded buffer by molecular-beam epitaxy,” Appl. Phys. Lett. 82(19), 3212 (2003).
[Crossref]

R. Nahory, M. Pollack, W. Johnston, and R. Barns, “Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, “Auger recombination in bulk and quantum well InGaAs,” Appl. Phys. Lett. 56(10), 913 (1990).
[Crossref]

IEEE Electron Device Lett. (2)

M. K. Hudait, Y. Lin, M. N. Palmisiano, and S. A. Ringel, “0.6-eV bandgap In0.69Ga0.31As thermophotovoltaic devices grown on InAsyP1-y step-graded buffers by molecular beam epitaxy,” IEEE Electron Device Lett. 24(9), 538540 (2003).
[Crossref]

M. K. Hudait, C. L. Andre, M. N. Kwon, Palmisiano, and S. A. Ringel, “High-performance In0.53Ga0.47As thermophotovoltaic devices grown by solid source molecular beam epitaxy,” IEEE Electron Device Lett. 23, 697–699 (2003).

IEEE J. Photovoltaics (1)

O. Miller, E. Yablonovitch, and S. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

IEEE Trans. Electron. Dev. (2)

T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984).
[Crossref]

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

J. Appl. Phys. (3)

M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 58(9), 3601 (1985).
[Crossref]

M. K. Hudait, “Comparison of mixed anion, InAsyP1−y and mixed cation InxAl1−xAs metamorphic buffers grown by molecular beam epitaxy on (100) InP substrates,” J. Appl. Phys. 95(8), 3952 (2004).
[Crossref]

R. S. Tuley and R. J. Nicholas, “Band gap dependent thermophotovoltaic device performance using the InGaAs and InGaAsP material system,” J. Appl. Phys. 108(8), 084516 (2010).
[Crossref]

J. Cryst. Growth (1)

J. Cederberg, J. Blaich, G. Girard, S. Lee, D. Nelson, and C. Murray, “The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers,” J. Cryst. Growth 310(15), 34533458 (2008).
[Crossref]

J. Phys. C Solid State Phys. (1)

P. Würfel, “The chemical potential of radiation,” J. Phys. C Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

J. Vac. Sci. Technol. B (1)

B. Wernsman, T. Bird, M. Sheldon, S. Link, and R. Wehrer, “Molecular beam epitaxy grown 0.6 eV n/p/n InPAs/InGaAs/InAlAs double heterostructure thermophotovoltaic devices using carbon as the p-type dopant,” J. Vac. Sci. Technol. B 24(3), 1626 (2006).
[Crossref]

Phys. Rev. (1)

J. Dixon and J. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560–1566 (1961).
[Crossref]

Renew. Sustain. Energy Rev. (1)

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3(2), 77–184 (1999).

Semicond. Sci. Technol. (1)

S. Murray, F. Newman, C. Murray, D. Wilt, M. Wanlass, P. Ahrenkiel, R. Messham, and R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion,” Semicond. Sci. Technol. 18(5), 202–208 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. W. Wanlass, J. S. Ward, K. A. Emery, M. M. Al-Jassim, K. M. Jones, and T. J. Coutts, “GaxIn1-xAs thermophotovoltaic converters,” Sol. Energy Mater. Sol. Cells 41-42, 405–417 (1996).
[Crossref]

Solid-State Electron. (1)

M. K. Hudait, M. Brenner, and S. A. Ringel, “Metamorphic In0.7Al0.3AsIn0.69Ga0.31As thermophotovoltaic devices grown on graded InAsyP1− y buffers by molecular beam epitaxy,” Solid-State Electron. 53(1), 102–106 (2009).
[Crossref]

Other (5)

S. S. Li, Semiconductor Physical Electronics (Springer, 2005), Chap. 11.

“Basic Parameters at 300K, Band structure and carrier concentration and Electrical Properties of GaxIn1-xAs,” (Ioffe Physical Technical Institute, 2015), http://www.ioffe.ru/SVA/NSM/Semicond/GaInAs/ accessed on March 5th 2015.

“Band structure and carrier concentration of GaxIn1-xAsyP1-y,” (Ioffe Physical Technical Institute 2015), http://www.ioffe.ru/SVA/NSM/Semicond/GaInAs/ accessed on March 5th 2015.

“Band structure and carrier concentration and Electrical Properties of GaAs,” (Ioffe Physical Technical Institute 2015), http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/ accessed on March 5th 2015.

“Band structure and carrier concentration and Electrical Properties of InAs,” (Ioffe Physical Technical Institute 2015), http://www.ioffe.ru/SVA/NSM/Semicond/InAs/ accessed on March 5th 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Details of the architecture with (a) and without (b) light trapping of the Ga x In 1-x As thermophotovoltaic cell investigated.
Fig. 2
Fig. 2 Details of the different absorptivity models used: flat surface with front surface (red arrows) and back surface absorption (green arrows) (a) and ideally textured surface with back mirror creating light trapping (orange arrows) (b).
Fig. 3
Fig. 3 Maximal theoretical efficiency η (black, left scale) and optimal Ga composition (red, right scale) of a Ga x In 1-x As cell with perfect light trapping as a function of the temperature of the cell T.
Fig. 4
Fig. 4 (a) Maximal theoretical efficiency η (black, left scale) and optimal bandgap Eg (red, right scale) for a dislocation-free Ga x In 1-x As cell with perfect light trapping as a function of the temperature of the thermal emitter Tsource. (b) Maximal theoretical efficiency η of a Ga x In 1-x As cell with perfect light trapping as a function of the bandgap of the cell Eg and the temperature of the thermal emitter Tsource.
Fig. 5
Fig. 5 (a) Maximal theoretical efficiency η of a Ga x In 1-x As cell with perfect light trapping as a function of the bandgap of the cell Eg and the incident power density Pin. (b) Maximal theoretical efficiency η (black, left scale) and optimal bandgap Eg opt (red, right scale) of a Ga x In 1-x As cell with perfect light trapping as a function of the incident power density Pin.
Fig. 6
Fig. 6 Maximal theoretical efficiency η of a Ga x In 1-x As cell with perfect light trapping as a function of the bandgap of the cell Eg and the threading dislocation density NTD.
Fig. 7
Fig. 7 Maximal theoretical efficiency η of a Ga x In 1-x As cell with (a) and without (b) light trapping as a function of the bandgap Eg and the thickness L of the cell.

Tables (1)

Tables Icon

Table 1 Formulas used for Ga x In 1-x As electronic parameters and their respective sources.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

a ( λ ) = 4 n r 2 α G a I n A s ( λ ) 1 + 4 n r 2 α G a I n A s ( λ )
α ( E ) = { α 0 exp ( E E g E 0 ) , E E g α 0 ( 1 + E E g E ' ) , E > E g
a f r o n t ( λ ) = 1 e α G a I n A s ( λ ) L .
a b a c k ( λ ) = 2 n r 2 ( 0 θ e s c ( 1 e α G a I n A s ( λ ) L cos θ ) cos θ sin θ d θ + θ e s c π 2 ( 1 e 2 α G a I n A s ( λ ) L cos θ ) cos θ sin θ d θ )
R r , r a d ( V ) = e q V k B T 0 + 2 π c a ( λ ) λ 4 e h c λ k B T d λ = R r , r a d , s c e q V k B T
J ( V ) = J p h + q R r , r a d , s c ( 1 e q V k B T ) + q m R r , m ( 1 e q V n m k B T )
J ( V ) = J p h q R r , r a d , s c e q V k B T q m R r , m e q V n m k B T .
J p h = q 0 + ( λ h c ) I ( T s o u r c e , λ ) a f r o n t ( λ ) d λ = q R g
J ( V ) = q ( R g R r , r a d , s c e q V k B T R r , S R H ( V ) R r , A u g e r ( V ) )
L T D = 4 π 3 N T D .
R r , S R H = n i W D 2 D p L T D 2 e ( q V 2 k B T ) = R r , S R H , s c e ( q V 2 k B T )
n i , G a I n A s = N c N v e E g 2 k B T ,
W D = 2 ε 0 ε r q k B T q ln ( N a N d n i , G a I n A s 2 ) ( 1 N a + 1 N d ) .
R r , A u g e r = C A u g e r L n i , G a I n A s 3 e ( 3 q V 2 k B T ) = R r , A u g e r , s c e ( 3 q V 2 k B T )
J ( V ) = q ( R g R r , r a d , s c ( V ) R r , S R H ( V ) R r , A u g e r ( V ) ) = q ( R g R r , r a d , s c e ( q V k B T ) R r , S R H e ( q V 2 k B T ) R r , A u g e r e ( 3 q V 2 k B T ) ) .
η = J m p p × V m p p P i n

Metrics