Abstract

A theoretical demonstration is given of coherent thermal emission via the visible region by exciting magnetic polaritons in isolated metal-dielectric-metal multilayer nanoshells and the collective behavior in a trimer comprising multilayer nanoshells. The dipolar metallic core induces magnetic polaritons in the dielectric shell creating a large enhancement of the emissivity, whose mechanism is different from that of film-coupled metamaterials. The coupling effect of the magnetic polaritons and the electric/magnetic modes of symmetric nanoparticle trimers is discussed to understand the collective behavior in self-assembled nanoparticle clusters with potential solar energy utilizations. The concept of hybridization is employed to understand the collective magnetic polaritons of a multilayer nanoshell trimer. The fundamental understanding gained herein opens up new ways to explore, control, and tailor spectral absorptance, thus facilitating rational design of novel self-assembled nanoclusters for energy harvesting.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film

B. J. Lee, L. P. Wang, and Z. M. Zhang
Opt. Express 16(15) 11328-11336 (2008)

Phonon-mediated magnetic polaritons
in the infrared region

L. P. Wang and Z. M. Zhang
Opt. Express 19(S2) A126-A135 (2011)

Optical properties of gold-silica-gold multilayer nanoshells

Ying Hu, Ryan C. Fleming, and Rebekah A. Drezek
Opt. Express 16(24) 19579-19591 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Service, “Turning up the Light,” Science 342(6160), 794–797 (2013).
    [Crossref] [PubMed]
  2. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
    [Crossref] [PubMed]
  3. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  4. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [Crossref] [PubMed]
  5. S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
    [Crossref] [PubMed]
  6. Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007).
    [Crossref] [PubMed]
  7. J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 026603 (2011).
    [Crossref] [PubMed]
  8. H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
    [Crossref] [PubMed]
  9. F. Monticone and A. Alù, “The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(43), 9059–9072 (2014).
    [Crossref]
  10. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  11. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
    [Crossref] [PubMed]
  12. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14(4), 1557–1567 (2006).
    [Crossref] [PubMed]
  13. J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
    [Crossref] [PubMed]
  14. C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009).
    [Crossref]
  15. A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17(7), 5723–5730 (2009).
    [Crossref] [PubMed]
  16. J. Qian, Z. Q. Chen, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Dual symmetry breaking in gold-silica-gold multilayer nanoshells,” Plasmonics 9(6), 1361–1369 (2014).
    [Crossref]
  17. J. Qian, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
    [Crossref]
  18. C. H. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
    [Crossref]
  19. H. L. Duan and Y. M. Xuan, “Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts,” Physica E 43(8), 1475–1480 (2011).
    [Crossref]
  20. N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
    [Crossref] [PubMed]
  21. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
    [Crossref] [PubMed]
  22. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
    [Crossref] [PubMed]
  23. S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
    [Crossref] [PubMed]
  24. A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
    [Crossref] [PubMed]
  25. D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110(25), 12302–12310 (2006).
    [Crossref] [PubMed]
  26. M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47(21), 213001 (2014).
    [Crossref]
  27. J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” J. Phys. Chem. C 112(37), 14313–14317 (2008).
    [Crossref]
  28. S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
    [Crossref] [PubMed]
  29. S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of Multiple Fano Resonances in Plasmonic Clusters with D 2 h Point Group Symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
    [Crossref]
  30. L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11(6), 2440–2445 (2011).
    [Crossref] [PubMed]
  31. R. Thomas and R. S. Swathi, “Organization of metal nanoparticles for surface-enhanced spectroscopy: a difference in size matters,” J. Phys. Chem. C 116(41), 21982–21991 (2012).
    [Crossref]
  32. Z. Y. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
    [Crossref]
  33. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
    [Crossref] [PubMed]
  34. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref] [PubMed]
  35. F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
    [Crossref] [PubMed]
  36. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
    [Crossref] [PubMed]
  37. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press,1998).
  38. H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158, 127–135 (2015).
    [Crossref]
  39. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
    [Crossref]
  40. L. P. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27(12), 2595–2604 (2010).
    [Crossref]
  41. B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
    [Crossref]
  42. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  43. S. A. Maier, Plasmonics:Fundamentals and Applications (Springer, 2007).
  44. A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
    [Crossref] [PubMed]

2015 (1)

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158, 127–135 (2015).
[Crossref]

2014 (5)

F. Monticone and A. Alù, “The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(43), 9059–9072 (2014).
[Crossref]

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

J. Qian, Z. Q. Chen, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Dual symmetry breaking in gold-silica-gold multilayer nanoshells,” Plasmonics 9(6), 1361–1369 (2014).
[Crossref]

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47(21), 213001 (2014).
[Crossref]

H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
[Crossref] [PubMed]

2013 (11)

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of Multiple Fano Resonances in Plasmonic Clusters with D 2 h Point Group Symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

Z. Y. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
[Crossref]

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

R. F. Service, “Turning up the Light,” Science 342(6160), 794–797 (2013).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

2012 (6)

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

J. Qian, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

R. Thomas and R. S. Swathi, “Organization of metal nanoparticles for surface-enhanced spectroscopy: a difference in size matters,” J. Phys. Chem. C 116(41), 21982–21991 (2012).
[Crossref]

2011 (5)

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11(6), 2440–2445 (2011).
[Crossref] [PubMed]

C. H. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
[Crossref]

H. L. Duan and Y. M. Xuan, “Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts,” Physica E 43(8), 1475–1480 (2011).
[Crossref]

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 026603 (2011).
[Crossref] [PubMed]

2010 (4)

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

L. P. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27(12), 2595–2604 (2010).
[Crossref]

2009 (2)

A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17(7), 5723–5730 (2009).
[Crossref] [PubMed]

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009).
[Crossref]

2008 (2)

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” J. Phys. Chem. C 112(37), 14313–14317 (2008).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14(4), 1557–1567 (2006).
[Crossref] [PubMed]

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110(25), 12302–12310 (2006).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Alaeian, H.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

Alaverdyan, Y.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” J. Phys. Chem. C 112(37), 14313–14317 (2008).
[Crossref]

Alegret, J.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” J. Phys. Chem. C 112(37), 14313–14317 (2008).
[Crossref]

Alù, A.

Aronzon, D.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
[Crossref] [PubMed]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Brandl, D.

Brandl, D. W.

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110(25), 12302–12310 (2006).
[Crossref] [PubMed]

Bürgi, T.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Cai, W.

Capasso, F.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007).
[Crossref] [PubMed]

Chen, E. R.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
[Crossref] [PubMed]

Chen, H.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Chen, J.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 026603 (2011).
[Crossref] [PubMed]

Chen, Z. H.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of Multiple Fano Resonances in Plasmonic Clusters with D 2 h Point Group Symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

Chen, Z. Q.

J. Qian, Z. Q. Chen, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Dual symmetry breaking in gold-silica-gold multilayer nanoshells,” Plasmonics 9(6), 1361–1369 (2014).
[Crossref]

Chettiar, U. K.

Chuntonov, L.

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11(6), 2440–2445 (2011).
[Crossref] [PubMed]

Collins, J. W.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
[Crossref] [PubMed]

Cunningham, A.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Day, J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

De Angelis, F.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

de Silva, V. C.

Dintinger, J.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Dionne, J. A.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

Drachev, V. P.

Duan, H. L.

H. L. Duan and Y. M. Xuan, “Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts,” Physica E 43(8), 1475–1480 (2011).
[Crossref]

Engheta, N.

Fan, J. A.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007).
[Crossref] [PubMed]

Fan, Z.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Fan, Z. Y.

Z. Y. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
[Crossref]

Farhat, M.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Fei, H. M.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of Multiple Fano Resonances in Plasmonic Clusters with D 2 h Point Group Symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

García-Etxarri, A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

Gonçalves, M. R.

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47(21), 213001 (2014).
[Crossref]

Govorov, A. O.

Z. Y. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
[Crossref]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Gunnarsson, L.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” J. Phys. Chem. C 112(37), 14313–14317 (2008).
[Crossref]

Halas, N. J.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Haran, G.

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11(6), 2440–2445 (2011).
[Crossref] [PubMed]

Hasan, S. B.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Holmes-Cerfon, M. C.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
[Crossref] [PubMed]

Kall, M.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” J. Phys. Chem. C 112(37), 14313–14317 (2008).
[Crossref]

Kildishev, A. V.

Kivshar, Y. S.

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

Knight, M. W.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Koh, A. L.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lal, S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Large, N.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lederer, F.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Lee, B. J.

Li, B. Q.

C. H. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
[Crossref]

Li, Y. D.

J. Qian, Z. Q. Chen, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Dual symmetry breaking in gold-silica-gold multilayer nanoshells,” Plasmonics 9(6), 1361–1369 (2014).
[Crossref]

J. Qian, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

Liberale, C.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Liu, C. H.

C. H. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
[Crossref]

Liu, N.

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

Liu, S. D.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of Multiple Fano Resonances in Plasmonic Clusters with D 2 h Point Group Symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

Lu, Y.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 026603 (2011).
[Crossref] [PubMed]

Manoharan, V. N.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Mi, C. C.

C. H. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
[Crossref]

Ming, H.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 026603 (2011).
[Crossref] [PubMed]

Mirin, N. A.

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110(25), 12302–12310 (2006).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

Monticone, F.

F. Monticone and A. Alù, “The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(43), 9059–9072 (2014).
[Crossref]

Mühlig, S.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Nazir, A.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Neumann, O.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Nordlander, P.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007).
[Crossref] [PubMed]

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110(25), 12302–12310 (2006).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

O’Dea, K.

Pakizeh, T.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” J. Phys. Chem. C 112(37), 14313–14317 (2008).
[Crossref]

Panaro, S.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Proietti Zaccaria, R.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Qian, J.

J. Qian, Z. Q. Chen, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Dual symmetry breaking in gold-silica-gold multilayer nanoshells,” Plasmonics 9(6), 1361–1369 (2014).
[Crossref]

J. Qian, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Rindzevicius, T.

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” J. Phys. Chem. C 112(37), 14313–14317 (2008).
[Crossref]

Rockstuhl, C.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Roller, E. M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Salandrino, A.

Schade, N. B.

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
[Crossref] [PubMed]

Scharf, T.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Scholl, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Service, R. F.

R. F. Service, “Turning up the Light,” Science 342(6160), 794–797 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

Sheikholeslami, S. N.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

Shen, X.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Shuai, Y.

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007).
[Crossref] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Simovski, C. R.

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Sun, Q.

J. Qian, Z. Q. Chen, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Dual symmetry breaking in gold-silica-gold multilayer nanoshells,” Plasmonics 9(6), 1361–1369 (2014).
[Crossref]

J. Qian, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

Swathi, R. S.

R. Thomas and R. S. Swathi, “Organization of metal nanoparticles for surface-enhanced spectroscopy: a difference in size matters,” J. Phys. Chem. C 116(41), 21982–21991 (2012).
[Crossref]

Thomas, R.

R. Thomas and R. S. Swathi, “Organization of metal nanoparticles for surface-enhanced spectroscopy: a difference in size matters,” J. Phys. Chem. C 116(41), 21982–21991 (2012).
[Crossref]

Toma, A.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Tretyakov, S. A.

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009).
[Crossref]

Urban, A. S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Urzhumov, Y. A.

Van Dorpe, P.

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

Wang, H.

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158, 127–135 (2015).
[Crossref]

H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Wang, L.

Wang, L. P.

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158, 127–135 (2015).
[Crossref]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

L. P. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27(12), 2595–2604 (2010).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Wang, P.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 026603 (2011).
[Crossref] [PubMed]

Wang, W. D.

J. Qian, Z. Q. Chen, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Dual symmetry breaking in gold-silica-gold multilayer nanoshells,” Plasmonics 9(6), 1361–1369 (2014).
[Crossref]

J. Qian, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

Wang, W. J.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of Multiple Fano Resonances in Plasmonic Clusters with D 2 h Point Group Symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

Wang, Y.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Wang, Y. C.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of Multiple Fano Resonances in Plasmonic Clusters with D 2 h Point Group Symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

Wen, F.

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Wu, C.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Xu, J. J.

J. Qian, Z. Q. Chen, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Dual symmetry breaking in gold-silica-gold multilayer nanoshells,” Plasmonics 9(6), 1361–1369 (2014).
[Crossref]

J. Qian, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

Xuan, Y. M.

H. L. Duan and Y. M. Xuan, “Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts,” Physica E 43(8), 1475–1480 (2011).
[Crossref]

Yang, Y. B.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of Multiple Fano Resonances in Plasmonic Clusters with D 2 h Point Group Symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

Ye, J.

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

Yuan, H. K.

Zhang, H.

Z. Y. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
[Crossref]

Zhang, M. J.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of Multiple Fano Resonances in Plasmonic Clusters with D 2 h Point Group Symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

Zhang, Z. M.

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 026603 (2011).
[Crossref] [PubMed]

L. P. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27(12), 2595–2604 (2010).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Zhao, B.

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

ACS Nano (1)

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

IEEE Trans. NanoTechnol. (1)

C. H. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
[Crossref]

Int. J. Heat Mass Transfer (1)

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

F. Monticone and A. Alù, “The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(43), 9059–9072 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110(25), 12302–12310 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (5)

J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and M. Kall, “Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography,” J. Phys. Chem. C 112(37), 14313–14317 (2008).
[Crossref]

R. Thomas and R. S. Swathi, “Organization of metal nanoparticles for surface-enhanced spectroscopy: a difference in size matters,” J. Phys. Chem. C 116(41), 21982–21991 (2012).
[Crossref]

Z. Y. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
[Crossref]

J. Qian, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of Multiple Fano Resonances in Plasmonic Clusters with D 2 h Point Group Symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

J. Phys. D (1)

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47(21), 213001 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158, 127–135 (2015).
[Crossref]

Nano Lett. (10)

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11(6), 2440–2445 (2011).
[Crossref] [PubMed]

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14(6), 3166–3171 (2014).
[Crossref] [PubMed]

Nature (1)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (1)

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 026603 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

N. B. Schade, M. C. Holmes-Cerfon, E. R. Chen, D. Aronzon, J. W. Collins, J. A. Fan, F. Capasso, and V. N. Manoharan, “Tetrahedral colloidal clusters from random parking of bidisperse spheres,” Phys. Rev. Lett. 110(14), 148303 (2013).
[Crossref] [PubMed]

Physica E (1)

H. L. Duan and Y. M. Xuan, “Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts,” Physica E 43(8), 1475–1480 (2011).
[Crossref]

Plasmonics (1)

J. Qian, Z. Q. Chen, W. D. Wang, Y. D. Li, J. J. Xu, and Q. Sun, “Dual symmetry breaking in gold-silica-gold multilayer nanoshells,” Plasmonics 9(6), 1361–1369 (2014).
[Crossref]

Sci. Rep. (1)

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Science (4)

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

R. F. Service, “Turning up the Light,” Science 342(6160), 794–797 (2013).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Other (2)

S. A. Maier, Plasmonics:Fundamentals and Applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press,1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic structure of nanoparticle (a) Midsectional view of Al@Al2O3@Al multilayer nanoshell. (b) Incident field for tangential excitation. (c) Incident field for orthogonal excitation. (d) Electric and magnetic dipole resonance. (e) Porosity model of multilayer nanoshell. Observation planes for the electromagnetic field distribution inside the (f) single nanoparticle (g) and tirmer.
Fig. 2
Fig. 2 (a)Spectral absorption properties for Al@Al2O3@Al multilayer nanoshell (MN1), Al@SiO2@Al multilayer nanoshell (MN2), Al nanoparticle (AlN) and Au@SiO2 nanoshell (AuN). (b) Spectral absorption of MN1 with perturbed parameters.
Fig. 3
Fig. 3 Electromagnetic field distributions for multilayer structures. (a)Electromagnetic field distributions at MPH in the midsection of MN1. (b)&(c) Electromagnetic field distributions at MPE in the midsection of MN1. (d)A zoom in view of Fig. 3(c). (e)The equivalent LC resonant circulating current.
Fig. 4
Fig. 4 Contour plots of spectral absorptance of MN1 as a function of porosity for (a) MPE1 and (b)MPH1. Resonance condition as a function of porosity for (c) MPE1 and (d)MPH1.
Fig. 5
Fig. 5 Spectral properties of trimer (a)Spectral absorptance of Al@Al2O3@Al multilayer nanoshell trimer(MNT) and Al trimer(AlT). (b) Schematic diagram of the spatial positions discussed in the paper. (c) Spectral absorptance of AlT with and without nanoparticles added, Px indicate the position where the nanoparticles added and Nx indicate the type of nanoparticles added. The spectral absorptance of P4 with N1 is not plotted as it has no difference comparing to P2 with N1, because position P2 and P4 are symmetrical in the structure. (d) Near-field spectral at position of P3 and P4. Near-field distributions of electric (e) and magnetic (f) fields in the midsection of Al trimer at wavelength of 480nm,the bright part indicate enhancement of electromagnetic field while the dark part indicate the suppression comparing to the incident light. (g) Schematic drawing of LC loop for Al trimer and short circuit caused by small nanoparticle addition.
Fig. 6
Fig. 6 Effect of particle radius on spectral absorptance (a) MPT as a function of r2 (b) Resonance condition.
Fig. 7
Fig. 7 Near-field distributions with and without pores of electric (a) and magnetic (b, c) fields in the midsection of MNT at wavelength of 520nm, the bright part indicate enhancement of electromagnetic field while the dark part indicate the suppression comparing to the incident light, the arrows symbolizing electric field vectors. (d) Midsectional view of the 2nd nanoparticle without pores at five specific wavelengths to investigate phase shift between electric and magnetic mode.
Fig. 8
Fig. 8 Near-field distributions of electromagnetic field at wavelength of 651nm (a) Midsectional views of the 1st nanoparticle at MPH1. (b)Midsectional views of the 2nd nanoparticle at MPH1. (c)&(d) Near-field spectral at position of P3 for MNT. (e) Contour plots of spectral absorptance of MNT as a function of polarization angle θ.
Fig. 9
Fig. 9 Near-field distributions of electromagnetic field at 430nm wavelength, the bright part indicate enhancement of magnetic field while the dark part indicate the suppression comparing to the incident light, the arrows symbolizing electric field vectors for (a) isolated Al@Al2O3@Al multilayer nanoshell, (b) 1st nanoparticle, (c) 2nd nanoparticle.
Fig. 10
Fig. 10 (a) Spectral absorptance of Al@Al2O3@Al multilayer nanoshell trimer (MNT) and Al trimer (AlT). (b) Near-field spectral at position of P3 and P4.
Fig. 11
Fig. 11 Near-field distributions of electromagnetic field at 651nm wavelength. (a) Midsectional views of the 1st nanoparticle at MPH1. (b)Midsectional views of the 2nd nanoparticle at MPH1.
Fig. 12
Fig. 12 Near-field spectral at position of P1 and P2.
Fig. 13
Fig. 13 (a) Spectral absorption properties for Al@Al2O3@Al multilayer nanoshell trimer (MNT). (b) An energy-level diagram describing the magnetic polariton hybridization resulting from the interaction between the single multilayer nanoshell and metallic trimer. The two resonance modes are EPT3(bonding) mode and EPT2 (antibonding) with magnetic field contour and electric vectors also plotted. (c) Resonance condition as a function of r1 for EPT2, EPT3 and MPE1, fixed wavelength electric dipole resonance EPT1 is plotted for comparison.

Tables (1)

Tables Icon

Table 1 Relation between porosity and the hole size

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k 2 inc / μ 2 + k 3 inc / μ 3 = 0
P trimer = i = 1 9 χ i P i
β = 14 π r 4 2 / ( 4 π r 3 2 )
λ 0 = 2 π c 0 ( L shell + L core ) C shell

Metrics