Abstract

A solar cell based on a hot electron plasmon protection effect is proposed and made plausible by simulations, non-local modeling of the response, and quantum mechanical calculations. In this cell, a thin-film, plasmonic metamaterial structure acts as both an efficient photon absorber in the visible frequency range and a plasmonic resonator in the IR range, the latter of which absorbs and protects against phonon emission the free energy of the hot electrons in an adjacent semiconductor junction. We show that in this structure, electron–plasmon scattering is much more efficient than electron–phonon scattering in cooling-off hot electrons, and the plasmon-stored energy is recoverable as an additional cell voltage. The proposed structure could become a prototype of a new generation of high efficiency solar cells.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metal-insulator-semiconductor heterostructures for plasmonic hot-carrier optoelectronics

F. Pelayo García de Arquer and Gerasimos Konstantatos
Opt. Express 23(11) 14715-14723 (2015)

Plasmonically enhanced hot electron based photovoltaic device

Fatih B. Atar, Enes Battal, Levent E. Aygun, Bihter Daglar, Mehmet Bayindir, and Ali K. Okyay
Opt. Express 21(6) 7196-7201 (2013)

Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals

Jeffrey B. Chou, Xin-Hao Li, Yu Wang, David P. Fenning, Asmaa Elfaer, Jaime Viegas, Mustapha Jouiad, Yang Shao-Horn, and Sang-Gook Kim
Opt. Express 24(18) A1234-A1244 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Gunn, “Microwave oscillations of current in III–V semiconductors,” Solid State Commun. 1(4), 88–91 (1963).
    [Crossref]
  2. R. T. Ross and A. J. Nozik, “Efficiency of hot-carrier solar energy converters,” J. Appl. Phys. 53(5), 3813–3818 (1982).
    [Crossref]
  3. H. Kroemer, “Theory of the Gunn effect,” Proc. IEEE 52(12), 1736 (1964).
    [Crossref]
  4. D. Frohman-Bentchkowsky, “Memory behavior in a floating-gate avalanche-injection MOS (FAMOS) structure,” Appl. Phys. Lett. 18(8), 332–334 (1971).
    [Crossref]
  5. M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, “Direct observation of ballistic transport in GaAs,” Phys. Rev. Lett. 55(20), 2200–2203 (1985).
    [Crossref] [PubMed]
  6. C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, K. Kempa, and E. Gornik, “Ballisticelectron transport in vertical biased superlattices,” Physica E 2(1–4), 282–286 (1998).
    [Crossref]
  7. A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” J. Appl. Phys. 83(4), 1789–1830 (1998).
    [Crossref]
  8. J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72(9), 1364–1367 (1994).
    [Crossref] [PubMed]
  9. S. M. Sze, High-Speed Semiconductor Devices (Wiley, 1990).
  10. K. M. Kramer and W. N. G. Hitchon, Semiconductor Devices: A Simulation Approach (Prentice Hall, 1997).
  11. J. A. Kash and J. C. Tsang, “Watching chips work: Picosecond hot electron light emission from integrated circuits,” J. Cryst. Growth 210(1–3), 318–322 (2000).
    [Crossref]
  12. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  13. M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2006).
  14. K. Kempa, “Plasmonic protection of the hot-electron energy,” Phys. Status Solidi RRL 7(7), 465–468 (2013); (erratum) ibid7(12), 1112 (2013).
  15. P. C. Cheng, “The contrast formation in optical microscopy,” in J. B. Pawley (ed.) Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, 2006), pp. 162–206.
  16. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metaloxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  17. H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8(4), 229–230 (2013).
    [Crossref] [PubMed]
  18. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref] [PubMed]
  19. D. J. Farrell, H. Sodabanlu, Y. Wang, M. Sugiyama, and Y. Okada, “Can a hot-carrier solar cell also be an efficient up-converter?” IEEE J. Photovoltaics 5(2), 571–576 (2015).
    [Crossref]
  20. G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
    [Crossref] [PubMed]
  21. G. D. Mahan, Many-Particle Physics (Plenum, 1981).
  22. J. J. Quinn and R. A. Ferrell, “Electron self-energy approach to correlation in a degenerate electron gas,” Phys. Rev. 112(3), 812–827 (1958).
    [Crossref]
  23. R. D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem (McGraw-Hill, 1976).
  24. O. D. Restrepo, K. Varga, and S. T. Pantelides, “First-principles calculations of electron mobilities in silicon: Phonon and Coulomb scattering,” Appl. Phys. Lett. 94(21), 212103 (2009).
    [Crossref]
  25. D. Rideau, W. Zhang, Y. M. Niquet, C. Delerue, C. Tavernier, and H. Jaouen, “Electron-phonon scattering in Si and Ge: From bulk to nanodevices,” 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Conference Publication (2011) pp. 47–50.
    [Crossref]
  26. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref] [PubMed]
  27. F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns as a general scheme for enhanced broadband light absorption,” Phys. Status Solidi A 212(3), 561–565 (2015).
    [Crossref]
  28. F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns for near-field scattering-enhanced optical absorption,” Phys. Status Solidi A 209, 1829–1834 (2012).
  29. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995) Norwood, MA.
  30. X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71(23), 233101 (2005).
    [Crossref]
  31. www.cst.com .
  32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  33. M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
    [Crossref]
  34. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1965).
  35. P. J. Feibelman, “Microscopic calculation of electromagnetic fields in refraction at a jellium-vacuum interface,” Phys. Rev. B 12(4), 1319–1336 (1975).
    [Crossref]
  36. P. J. Feibelman, “Surface electromagnetic fields,” Prog. Surf. Sci. 12(4), 287–407 (1982).
    [Crossref]
  37. A. Liebsch, “Dynamical screening at simple-metal surfaces,” Phys. Rev. B Condens. Matter 36(14), 7378–7388 (1987).
    [Crossref] [PubMed]
  38. K. Kempa, A. Liebsch, and W. L. Schaich, “Comparison of calculations of dynamical screening at jellium surfaces,” Phys. Rev. B Condens. Matter 38(17), 12645–12648 (1988).
    [Crossref] [PubMed]
  39. A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals,” Phys. Rev. B Condens. Matter 48(15), 11317–11328 (1993).
    [Crossref] [PubMed]
  40. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  41. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  42. K. Kempa, M. J. Naughton, Z. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” Appl. Phys. Lett. 95(23), 233121 (2009).
    [Crossref]
  43. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
    [Crossref] [PubMed]
  44. F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
    [Crossref] [PubMed]

2015 (3)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

D. J. Farrell, H. Sodabanlu, Y. Wang, M. Sugiyama, and Y. Okada, “Can a hot-carrier solar cell also be an efficient up-converter?” IEEE J. Photovoltaics 5(2), 571–576 (2015).
[Crossref]

F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns as a general scheme for enhanced broadband light absorption,” Phys. Status Solidi A 212(3), 561–565 (2015).
[Crossref]

2014 (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metaloxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

2013 (2)

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8(4), 229–230 (2013).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

2012 (2)

F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns for near-field scattering-enhanced optical absorption,” Phys. Status Solidi A 209, 1829–1834 (2012).

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

2011 (2)

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (2)

K. Kempa, M. J. Naughton, Z. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” Appl. Phys. Lett. 95(23), 233121 (2009).
[Crossref]

O. D. Restrepo, K. Varga, and S. T. Pantelides, “First-principles calculations of electron mobilities in silicon: Phonon and Coulomb scattering,” Appl. Phys. Lett. 94(21), 212103 (2009).
[Crossref]

2007 (1)

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[Crossref] [PubMed]

2005 (1)

X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71(23), 233101 (2005).
[Crossref]

2001 (1)

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
[Crossref]

2000 (1)

J. A. Kash and J. C. Tsang, “Watching chips work: Picosecond hot electron light emission from integrated circuits,” J. Cryst. Growth 210(1–3), 318–322 (2000).
[Crossref]

1998 (2)

C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, K. Kempa, and E. Gornik, “Ballisticelectron transport in vertical biased superlattices,” Physica E 2(1–4), 282–286 (1998).
[Crossref]

A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” J. Appl. Phys. 83(4), 1789–1830 (1998).
[Crossref]

1994 (1)

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72(9), 1364–1367 (1994).
[Crossref] [PubMed]

1993 (1)

A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals,” Phys. Rev. B Condens. Matter 48(15), 11317–11328 (1993).
[Crossref] [PubMed]

1988 (1)

K. Kempa, A. Liebsch, and W. L. Schaich, “Comparison of calculations of dynamical screening at jellium surfaces,” Phys. Rev. B Condens. Matter 38(17), 12645–12648 (1988).
[Crossref] [PubMed]

1987 (1)

A. Liebsch, “Dynamical screening at simple-metal surfaces,” Phys. Rev. B Condens. Matter 36(14), 7378–7388 (1987).
[Crossref] [PubMed]

1985 (1)

M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, “Direct observation of ballistic transport in GaAs,” Phys. Rev. Lett. 55(20), 2200–2203 (1985).
[Crossref] [PubMed]

1982 (2)

R. T. Ross and A. J. Nozik, “Efficiency of hot-carrier solar energy converters,” J. Appl. Phys. 53(5), 3813–3818 (1982).
[Crossref]

P. J. Feibelman, “Surface electromagnetic fields,” Prog. Surf. Sci. 12(4), 287–407 (1982).
[Crossref]

1975 (1)

P. J. Feibelman, “Microscopic calculation of electromagnetic fields in refraction at a jellium-vacuum interface,” Phys. Rev. B 12(4), 1319–1336 (1975).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1971 (1)

D. Frohman-Bentchkowsky, “Memory behavior in a floating-gate avalanche-injection MOS (FAMOS) structure,” Appl. Phys. Lett. 18(8), 332–334 (1971).
[Crossref]

1964 (1)

H. Kroemer, “Theory of the Gunn effect,” Proc. IEEE 52(12), 1736 (1964).
[Crossref]

1963 (1)

J. B. Gunn, “Microwave oscillations of current in III–V semiconductors,” Solid State Commun. 1(4), 88–91 (1963).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

1958 (1)

J. J. Quinn and R. A. Ferrell, “Electron self-energy approach to correlation in a degenerate electron gas,” Phys. Rev. 112(3), 812–827 (1958).
[Crossref]

Aeschlimann, M.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
[Crossref]

Aussenegg, F. R.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Boxleitner, W.

C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, K. Kempa, and E. Gornik, “Ballisticelectron transport in vertical biased superlattices,” Physica E 2(1–4), 282–286 (1998).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8(4), 229–230 (2013).
[Crossref] [PubMed]

Burns, M. J.

F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns as a general scheme for enhanced broadband light absorption,” Phys. Status Solidi A 212(3), 561–565 (2015).
[Crossref]

F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns for near-field scattering-enhanced optical absorption,” Phys. Status Solidi A 209, 1829–1834 (2012).

Chalabi, H.

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8(4), 229–230 (2013).
[Crossref] [PubMed]

Choi, Y.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metaloxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Delerue, C.

D. Rideau, W. Zhang, Y. M. Niquet, C. Delerue, C. Tavernier, and H. Jaouen, “Electron-phonon scattering in Si and Ge: From bulk to nanodevices,” 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Conference Publication (2011) pp. 47–50.
[Crossref]

Ditlbacher, H.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
[Crossref]

Farrell, D. J.

D. J. Farrell, H. Sodabanlu, Y. Wang, M. Sugiyama, and Y. Okada, “Can a hot-carrier solar cell also be an efficient up-converter?” IEEE J. Photovoltaics 5(2), 571–576 (2015).
[Crossref]

Feibelman, P. J.

P. J. Feibelman, “Surface electromagnetic fields,” Prog. Surf. Sci. 12(4), 287–407 (1982).
[Crossref]

P. J. Feibelman, “Microscopic calculation of electromagnetic fields in refraction at a jellium-vacuum interface,” Phys. Rev. B 12(4), 1319–1336 (1975).
[Crossref]

Ferrell, R. A.

J. J. Quinn and R. A. Ferrell, “Electron self-energy approach to correlation in a degenerate electron gas,” Phys. Rev. 112(3), 812–827 (1958).
[Crossref]

Frohman-Bentchkowsky, D.

D. Frohman-Bentchkowsky, “Memory behavior in a floating-gate avalanche-injection MOS (FAMOS) structure,” Appl. Phys. Lett. 18(8), 332–334 (1971).
[Crossref]

Gao, Y.

K. Kempa, M. J. Naughton, Z. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” Appl. Phys. Lett. 95(23), 233121 (2009).
[Crossref]

Goldman, J. R.

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72(9), 1364–1367 (1994).
[Crossref] [PubMed]

Gornik, E.

C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, K. Kempa, and E. Gornik, “Ballisticelectron transport in vertical biased superlattices,” Physica E 2(1–4), 282–286 (1998).
[Crossref]

Gunn, J. B.

J. B. Gunn, “Microwave oscillations of current in III–V semiconductors,” Solid State Commun. 1(4), 88–91 (1963).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Heiblum, M.

M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, “Direct observation of ballistic transport in GaAs,” Phys. Rev. Lett. 55(20), 2200–2203 (1985).
[Crossref] [PubMed]

Herczynski, A.

K. Kempa, M. J. Naughton, Z. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” Appl. Phys. Lett. 95(23), 233121 (2009).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jaouen, H.

D. Rideau, W. Zhang, Y. M. Niquet, C. Delerue, C. Tavernier, and H. Jaouen, “Electron-phonon scattering in Si and Ge: From bulk to nanodevices,” 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Conference Publication (2011) pp. 47–50.
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Kang, T.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[Crossref] [PubMed]

Kash, J. A.

J. A. Kash and J. C. Tsang, “Watching chips work: Picosecond hot electron light emission from integrated circuits,” J. Cryst. Growth 210(1–3), 318–322 (2000).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

K. Kempa, M. J. Naughton, Z. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” Appl. Phys. Lett. 95(23), 233121 (2009).
[Crossref]

X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71(23), 233101 (2005).
[Crossref]

C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, K. Kempa, and E. Gornik, “Ballisticelectron transport in vertical biased superlattices,” Physica E 2(1–4), 282–286 (1998).
[Crossref]

K. Kempa, A. Liebsch, and W. L. Schaich, “Comparison of calculations of dynamical screening at jellium surfaces,” Phys. Rev. B Condens. Matter 38(17), 12645–12648 (1988).
[Crossref] [PubMed]

Kirkpatrick, T.

K. Kempa, M. J. Naughton, Z. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” Appl. Phys. Lett. 95(23), 233121 (2009).
[Crossref]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Knoedler, C. M.

M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, “Direct observation of ballistic transport in GaAs,” Phys. Rev. Lett. 55(20), 2200–2203 (1985).
[Crossref] [PubMed]

Krenn, J. R.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
[Crossref]

Kroemer, H.

H. Kroemer, “Theory of the Gunn effect,” Proc. IEEE 52(12), 1736 (1964).
[Crossref]

Lee, L. P.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[Crossref] [PubMed]

Liebsch, A.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
[Crossref]

A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals,” Phys. Rev. B Condens. Matter 48(15), 11317–11328 (1993).
[Crossref] [PubMed]

K. Kempa, A. Liebsch, and W. L. Schaich, “Comparison of calculations of dynamical screening at jellium surfaces,” Phys. Rev. B Condens. Matter 38(17), 12645–12648 (1988).
[Crossref] [PubMed]

A. Liebsch, “Dynamical screening at simple-metal surfaces,” Phys. Rev. B Condens. Matter 36(14), 7378–7388 (1987).
[Crossref] [PubMed]

Liu, G. L.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[Crossref] [PubMed]

Long, Y. T.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[Crossref] [PubMed]

Melosh, N. A.

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Nathan, M. I.

M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, “Direct observation of ballistic transport in GaAs,” Phys. Rev. Lett. 55(20), 2200–2203 (1985).
[Crossref] [PubMed]

Naughton, M. J.

F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns as a general scheme for enhanced broadband light absorption,” Phys. Status Solidi A 212(3), 561–565 (2015).
[Crossref]

F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns for near-field scattering-enhanced optical absorption,” Phys. Status Solidi A 209, 1829–1834 (2012).

K. Kempa, M. J. Naughton, Z. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” Appl. Phys. Lett. 95(23), 233121 (2009).
[Crossref]

Niquet, Y. M.

D. Rideau, W. Zhang, Y. M. Niquet, C. Delerue, C. Tavernier, and H. Jaouen, “Electron-phonon scattering in Si and Ge: From bulk to nanodevices,” 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Conference Publication (2011) pp. 47–50.
[Crossref]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Nozik, A. J.

R. T. Ross and A. J. Nozik, “Efficiency of hot-carrier solar energy converters,” J. Appl. Phys. 53(5), 3813–3818 (1982).
[Crossref]

Ohms, T.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
[Crossref]

Okada, Y.

D. J. Farrell, H. Sodabanlu, Y. Wang, M. Sugiyama, and Y. Okada, “Can a hot-carrier solar cell also be an efficient up-converter?” IEEE J. Photovoltaics 5(2), 571–576 (2015).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Othonos, A.

A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” J. Appl. Phys. 83(4), 1789–1830 (1998).
[Crossref]

Pantelides, S. T.

O. D. Restrepo, K. Varga, and S. T. Pantelides, “First-principles calculations of electron mobilities in silicon: Phonon and Coulomb scattering,” Appl. Phys. Lett. 94(21), 212103 (2009).
[Crossref]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Porath, R.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
[Crossref]

Prybyla, J. A.

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72(9), 1364–1367 (1994).
[Crossref] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Quinn, J. J.

J. J. Quinn and R. A. Ferrell, “Electron self-energy approach to correlation in a degenerate electron gas,” Phys. Rev. 112(3), 812–827 (1958).
[Crossref]

Rauch, C.

C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, K. Kempa, and E. Gornik, “Ballisticelectron transport in vertical biased superlattices,” Physica E 2(1–4), 282–286 (1998).
[Crossref]

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

K. Kempa, M. J. Naughton, Z. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” Appl. Phys. Lett. 95(23), 233121 (2009).
[Crossref]

Restrepo, O. D.

O. D. Restrepo, K. Varga, and S. T. Pantelides, “First-principles calculations of electron mobilities in silicon: Phonon and Coulomb scattering,” Appl. Phys. Lett. 94(21), 212103 (2009).
[Crossref]

Rideau, D.

D. Rideau, W. Zhang, Y. M. Niquet, C. Delerue, C. Tavernier, and H. Jaouen, “Electron-phonon scattering in Si and Ge: From bulk to nanodevices,” 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Conference Publication (2011) pp. 47–50.
[Crossref]

Ross, R. T.

R. T. Ross and A. J. Nozik, “Efficiency of hot-carrier solar energy converters,” J. Appl. Phys. 53(5), 3813–3818 (1982).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Rybczynski, J.

K. Kempa, M. J. Naughton, Z. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” Appl. Phys. Lett. 95(23), 233121 (2009).
[Crossref]

Schaich, W. L.

K. Kempa, A. Liebsch, and W. L. Schaich, “Comparison of calculations of dynamical screening at jellium surfaces,” Phys. Rev. B Condens. Matter 38(17), 12645–12648 (1988).
[Crossref] [PubMed]

Scharte, M.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Sodabanlu, H.

D. J. Farrell, H. Sodabanlu, Y. Wang, M. Sugiyama, and Y. Okada, “Can a hot-carrier solar cell also be an efficient up-converter?” IEEE J. Photovoltaics 5(2), 571–576 (2015).
[Crossref]

Strasser, G.

C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, K. Kempa, and E. Gornik, “Ballisticelectron transport in vertical biased superlattices,” Physica E 2(1–4), 282–286 (1998).
[Crossref]

Sugiyama, M.

D. J. Farrell, H. Sodabanlu, Y. Wang, M. Sugiyama, and Y. Okada, “Can a hot-carrier solar cell also be an efficient up-converter?” IEEE J. Photovoltaics 5(2), 571–576 (2015).
[Crossref]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Tavernier, C.

D. Rideau, W. Zhang, Y. M. Niquet, C. Delerue, C. Tavernier, and H. Jaouen, “Electron-phonon scattering in Si and Ge: From bulk to nanodevices,” 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Conference Publication (2011) pp. 47–50.
[Crossref]

Thomas, D. C.

M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, “Direct observation of ballistic transport in GaAs,” Phys. Rev. Lett. 55(20), 2200–2203 (1985).
[Crossref] [PubMed]

Tsang, J. C.

J. A. Kash and J. C. Tsang, “Watching chips work: Picosecond hot electron light emission from integrated circuits,” J. Cryst. Growth 210(1–3), 318–322 (2000).
[Crossref]

Unterrainer, K.

C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, K. Kempa, and E. Gornik, “Ballisticelectron transport in vertical biased superlattices,” Physica E 2(1–4), 282–286 (1998).
[Crossref]

Varga, K.

O. D. Restrepo, K. Varga, and S. T. Pantelides, “First-principles calculations of electron mobilities in silicon: Phonon and Coulomb scattering,” Appl. Phys. Lett. 94(21), 212103 (2009).
[Crossref]

Wang, F.

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Wang, X.

X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71(23), 233101 (2005).
[Crossref]

Wang, Y.

D. J. Farrell, H. Sodabanlu, Y. Wang, M. Sugiyama, and Y. Okada, “Can a hot-carrier solar cell also be an efficient up-converter?” IEEE J. Photovoltaics 5(2), 571–576 (2015).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Ye, F.

F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns as a general scheme for enhanced broadband light absorption,” Phys. Status Solidi A 212(3), 561–565 (2015).
[Crossref]

F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns for near-field scattering-enhanced optical absorption,” Phys. Status Solidi A 209, 1829–1834 (2012).

Zhang, W.

D. Rideau, W. Zhang, Y. M. Niquet, C. Delerue, C. Tavernier, and H. Jaouen, “Electron-phonon scattering in Si and Ge: From bulk to nanodevices,” 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Conference Publication (2011) pp. 47–50.
[Crossref]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73(4), 305–310 (2001).
[Crossref]

Appl. Phys. Lett. (3)

O. D. Restrepo, K. Varga, and S. T. Pantelides, “First-principles calculations of electron mobilities in silicon: Phonon and Coulomb scattering,” Appl. Phys. Lett. 94(21), 212103 (2009).
[Crossref]

D. Frohman-Bentchkowsky, “Memory behavior in a floating-gate avalanche-injection MOS (FAMOS) structure,” Appl. Phys. Lett. 18(8), 332–334 (1971).
[Crossref]

K. Kempa, M. J. Naughton, Z. Ren, A. Herczynski, T. Kirkpatrick, J. Rybczynski, and Y. Gao, “Hot electron effect in nanoscopically thin photovoltaic junctions,” Appl. Phys. Lett. 95(23), 233121 (2009).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE J. Photovoltaics (1)

D. J. Farrell, H. Sodabanlu, Y. Wang, M. Sugiyama, and Y. Okada, “Can a hot-carrier solar cell also be an efficient up-converter?” IEEE J. Photovoltaics 5(2), 571–576 (2015).
[Crossref]

J. Appl. Phys. (3)

R. T. Ross and A. J. Nozik, “Efficiency of hot-carrier solar energy converters,” J. Appl. Phys. 53(5), 3813–3818 (1982).
[Crossref]

A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” J. Appl. Phys. 83(4), 1789–1830 (1998).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

J. Cryst. Growth (1)

J. A. Kash and J. C. Tsang, “Watching chips work: Picosecond hot electron light emission from integrated circuits,” J. Cryst. Growth 210(1–3), 318–322 (2000).
[Crossref]

Nano Lett. (2)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8(4), 229–230 (2013).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metaloxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Phys. Rev. (1)

J. J. Quinn and R. A. Ferrell, “Electron self-energy approach to correlation in a degenerate electron gas,” Phys. Rev. 112(3), 812–827 (1958).
[Crossref]

Phys. Rev. B (3)

X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71(23), 233101 (2005).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

P. J. Feibelman, “Microscopic calculation of electromagnetic fields in refraction at a jellium-vacuum interface,” Phys. Rev. B 12(4), 1319–1336 (1975).
[Crossref]

Phys. Rev. B Condens. Matter (3)

A. Liebsch, “Dynamical screening at simple-metal surfaces,” Phys. Rev. B Condens. Matter 36(14), 7378–7388 (1987).
[Crossref] [PubMed]

K. Kempa, A. Liebsch, and W. L. Schaich, “Comparison of calculations of dynamical screening at jellium surfaces,” Phys. Rev. B Condens. Matter 38(17), 12645–12648 (1988).
[Crossref] [PubMed]

A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals,” Phys. Rev. B Condens. Matter 48(15), 11317–11328 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72(9), 1364–1367 (1994).
[Crossref] [PubMed]

M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, “Direct observation of ballistic transport in GaAs,” Phys. Rev. Lett. 55(20), 2200–2203 (1985).
[Crossref] [PubMed]

Phys. Status Solidi A (2)

F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns as a general scheme for enhanced broadband light absorption,” Phys. Status Solidi A 212(3), 561–565 (2015).
[Crossref]

F. Ye, M. J. Burns, and M. J. Naughton, “Embedded metal nanopatterns for near-field scattering-enhanced optical absorption,” Phys. Status Solidi A 209, 1829–1834 (2012).

Physica E (1)

C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, K. Kempa, and E. Gornik, “Ballisticelectron transport in vertical biased superlattices,” Physica E 2(1–4), 282–286 (1998).
[Crossref]

Proc. IEEE (1)

H. Kroemer, “Theory of the Gunn effect,” Proc. IEEE 52(12), 1736 (1964).
[Crossref]

Prog. Surf. Sci. (1)

P. J. Feibelman, “Surface electromagnetic fields,” Prog. Surf. Sci. 12(4), 287–407 (1982).
[Crossref]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Solid State Commun. (1)

J. B. Gunn, “Microwave oscillations of current in III–V semiconductors,” Solid State Commun. 1(4), 88–91 (1963).
[Crossref]

Other (11)

M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2006).

K. Kempa, “Plasmonic protection of the hot-electron energy,” Phys. Status Solidi RRL 7(7), 465–468 (2013); (erratum) ibid7(12), 1112 (2013).

P. C. Cheng, “The contrast formation in optical microscopy,” in J. B. Pawley (ed.) Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, 2006), pp. 162–206.

S. M. Sze, High-Speed Semiconductor Devices (Wiley, 1990).

K. M. Kramer and W. N. G. Hitchon, Semiconductor Devices: A Simulation Approach (Prentice Hall, 1997).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995) Norwood, MA.

R. D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem (McGraw-Hill, 1976).

G. D. Mahan, Many-Particle Physics (Plenum, 1981).

www.cst.com .

D. Rideau, W. Zhang, Y. M. Niquet, C. Delerue, C. Tavernier, and H. Jaouen, “Electron-phonon scattering in Si and Ge: From bulk to nanodevices,” 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Conference Publication (2011) pp. 47–50.
[Crossref]

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1965).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of a unit cell (300 nm × 300 nm) of a square array of plasmonic resonators in a HELPP solar cell structure. The thickness of each layer is: macroscopically-thick Ag bottom electrode, 10 nm a-Si absorber, and 40 nm Ag top plasmonic resonator (200 nm × 200 nm). (b) Simulated absorbance spectrum of the structure, showing two plasmon resonances in the infrared. For the purposes of this paper, this scale for the resonance peaks near 0.3 and 0.8 eV refers to energies above (below) a semiconductor absorber’s conduction (valence) band edge. (c) Electric field distribution (scaled to the incident field magnitude) in a cross-section of the unit cell (through the unit center, parallel to the unit side), at the frequencies of the main plasmon resonance peaks at 0.3 and 0.8 eV. Field enhancements up to E/Eo~30 (i.e. intensity gain ~302 ~1,000) are realized within the photovoltaic absorber.
Fig. 2
Fig. 2 (a) Reflectance of the structure shown in Fig. 1: simulations (dashed line) and model three-layer system calculations (solid line). (b) Calculated minimum (red) and maximum (blue) ranges of scattering rates for hot electrons with plasmons (corresponding to the upper and lower limits, respectively, for the background permittivity), and the reported range of scattering rates [24,25] for hot electrons with phonons (black). Arrows indicate connections between plasmonic absorbance resonances and enhancements in hot electron-plasmon scattering.
Fig. 3
Fig. 3 Schematic of HELPP action. (a) A semiconductor absorbs a photon of energy greater than the band gap ECEV, exciting an electron high into the conduction band. (b) Prior to losing the above-gap excess energy to phonons/heat, this hot electron resonantly exchanges that excess energy with a plasmon mode in a proximate plasmonic metamaterial structure having effective Fermi energy EF. This plasmon Landau damps into an electron-hole pair in the metal (e.g. Ag). (c) The originally photoexcited electron recombines with the plasmon-excited hole at EF, leaving behind a high energy electron to be harvested as current, and at higher voltage than that conventionally determined by the semiconductor band gap. These 3 steps can equivalently be described by the process in (d).
Fig. 4
Fig. 4 Schematic of a tandem hot electron cell, with a thin plasmonic resonator-embedded Schottky junction generating voltage H (for hot) separated from an ultrathin solar cell (a-Si shown) generating voltage U.
Fig. 5
Fig. 5 Band diagram of tandem cell of Fig. 4. IP is inverse photoemission process for hot electron energy release from plasmonic resonator. LD refers to Landau damping.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γ k 2 d q ( 2 π ) 3 [ n B ( E k E k + q ) n F ( E k + q + μ ) ] Im [ V e f f [ q , ( E k + q E k ) / ] ] ,
V e f f ( q , ω ) = V q ε ( q , ω ) + Ω q | g q / ε ( q , ω ) | 2 ω 2 Ω q 2 / ε ( q , ω ) + i 0 +     ,
ε ( ω ) = ε b + m = 1 M ω p m 2 ω r m 2 ω ( ω + i γ ¯ e l p h ) Σ ( q ) ,
R = | r | 2 = | ( 1 ε ) ( 1 + ε ) e x p ( i 4 π n d / λ ) ( 1 + ε ) + ( 1 ε ) e x p ( i 4 π n d / λ ) | 2 .
Σ ( q ) = | q | D ( ω ) ω s 2 | q | D ( ω s ) ω s 2 ,
ω s = ω p / 1 + R e ( ε b ) ,

Metrics