Abstract

Refrigeration of a solid-state system with light has potential applications for cooling small-scale electronics and photonics. We show theoretically that two coupled semiconductor quantum wells are efficient cooling media for optical refrigeration because they support long-lived indirect electron-hole pairs. Thermal excitation of these pairs to distinct higher-energy states with faster radiative recombination allows an efficient escape channel to remove thermal energy from the system. This allows reaching much higher cooling efficiencies than with single quantum wells. From band-diagram calculations along with an experimentally realistic level scheme we calculate the cooling efficiency and cooling yield of different devices with coupled quantum wells embedded in a suspended nanomembrane. The dimension and composition of the quantum wells allow optimizing either of these quantities, which cannot, however, be maximized simultaneously. Quantum-well structures with electrical control allow tunability of carrier lifetimes and energy levels so that the cooling efficiency can be optimized over time as the thermal population decreases due to the cooling.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ytterbium-doped glass-ceramics for optical refrigeration

Elton Soares de Lima Filho, Kummara Venkata Krishnaiah, Yannick Ledemi, Ye-Jin Yu, Younes Messaddeq, Galina Nemova, and Raman Kashyap
Opt. Express 23(4) 4630-4640 (2015)

Cryogenic optical refrigeration

Denis V. Seletskiy, Markus P. Hehlen, Richard I. Epstein, and Mansoor Sheik-Bahae
Adv. Opt. Photon. 4(1) 78-107 (2012)

Condensed-phase optical refrigeration

Anton Rayner, Norman R. Heckenberg, and Halina Rubinsztein-Dunlop
J. Opt. Soc. Am. B 20(5) 1037-1053 (2003)

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung,” Zeitschrift für Physik 57, 739–746 (1929).
    [Crossref]
  2. P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112, 044301 (2014).
    [Crossref]
  3. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
    [Crossref]
  4. C. Cohen-Tannoudji, “Manipulating atoms with photons,” Physica Scripta 1998, 33 (1998).
    [Crossref]
  5. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  6. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007).
    [Crossref]
  7. R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley, 2009).
    [Crossref]
  8. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [Crossref]
  9. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78, 1030 (1997).
    [Crossref]
  10. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
    [Crossref]
  11. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
    [Crossref]
  12. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
    [Crossref] [PubMed]
  13. J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
    [Crossref] [PubMed]
  14. M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92, 247403 (2004).
    [Crossref]
  15. J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys. 100, 113116 (2006).
    [Crossref]
  16. L. V. Butov, A. Imamoglu, A. V. Mintsev, K. L. Campman, and A. C. Gossard, “Photoluminescence kinetics of indirect excitons in GaAs/Alx Ga1−x As coupled quantum wells,” Phys. Rev. B 59, 1625–1628 (1999).
    [Crossref]
  17. J. E. Golub, K. Kash, J. P. Harbison, and L. T. Florez, “Long-lived spatially indirect excitons in coupled GaAs/Alx Ga1−x As quantum wells,” Phys. Rev. B 41, 8564 (1990).
    [Crossref]
  18. A. A. High, A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A. C. Gossard, “Indirect excitons in elevated traps,” Nano Lett. 9(5), 2094–2098 (2009).
    [Crossref] [PubMed]
  19. D. W. Snoke, V. Negoita, and K. Eberl, “Energy shifts of indirect excitons in coupled quantum wells,” J. Lumin. 87, 157–161 (2000).
    [Crossref]
  20. D. Oberhauser, K.-H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
    [Crossref]
  21. P. Tighineanu, “Electroabsorption of highly confined systems,” Master’s thesis, Karlsruhe Institute of Technology (2011).
  22. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
    [Crossref]
  23. L. Midolo, T. Pregnolato, G. Kiršanskė, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” arXiv preprint arXiv1506.00376 (2015).
  24. J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
  25. S. Adachi, “Lattice thermal resistivity of III–V compound alloys,” J. Appl. Phys. 54(4), 1844–1848 (1983).
    [Crossref]
  26. M. A. Afromowitz, “Thermal conductivity of Ga1−x Alx As alloys,” J. Appl. Phys. 44(3), 1292–1294 (1973).
    [Crossref]
  27. A. M. Fox, Optical Properties of Solids (Oxford University, 2001).
  28. A. Harwit and J. S. Harris, “Observation of Stark shifts in quantum well intersubband transitions,” Appl. Phys. Lett. 50, 685–687 (1987).
    [Crossref]
  29. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
    [Crossref]
  30. T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
    [Crossref]
  31. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
    [Crossref]
  32. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
    [Crossref]

2015 (1)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

2014 (2)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112, 044301 (2014).
[Crossref]

2013 (2)

2011 (1)

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).

2010 (1)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[Crossref]

2009 (1)

A. A. High, A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A. C. Gossard, “Indirect excitons in elevated traps,” Nano Lett. 9(5), 2094–2098 (2009).
[Crossref] [PubMed]

2007 (1)

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007).
[Crossref]

2006 (1)

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys. 100, 113116 (2006).
[Crossref]

2005 (1)

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[Crossref]

2004 (2)

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92, 247403 (2004).
[Crossref]

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
[Crossref]

2001 (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

2000 (1)

D. W. Snoke, V. Negoita, and K. Eberl, “Energy shifts of indirect excitons in coupled quantum wells,” J. Lumin. 87, 157–161 (2000).
[Crossref]

1999 (1)

L. V. Butov, A. Imamoglu, A. V. Mintsev, K. L. Campman, and A. C. Gossard, “Photoluminescence kinetics of indirect excitons in GaAs/Alx Ga1−x As coupled quantum wells,” Phys. Rev. B 59, 1625–1628 (1999).
[Crossref]

1998 (1)

C. Cohen-Tannoudji, “Manipulating atoms with photons,” Physica Scripta 1998, 33 (1998).
[Crossref]

1997 (2)

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[Crossref]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78, 1030 (1997).
[Crossref]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

1993 (1)

D. Oberhauser, K.-H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

1992 (1)

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[Crossref]

1990 (1)

J. E. Golub, K. Kash, J. P. Harbison, and L. T. Florez, “Long-lived spatially indirect excitons in coupled GaAs/Alx Ga1−x As quantum wells,” Phys. Rev. B 41, 8564 (1990).
[Crossref]

1987 (1)

A. Harwit and J. S. Harris, “Observation of Stark shifts in quantum well intersubband transitions,” Appl. Phys. Lett. 50, 685–687 (1987).
[Crossref]

1983 (1)

S. Adachi, “Lattice thermal resistivity of III–V compound alloys,” J. Appl. Phys. 54(4), 1844–1848 (1983).
[Crossref]

1973 (1)

M. A. Afromowitz, “Thermal conductivity of Ga1−x Alx As alloys,” J. Appl. Phys. 44(3), 1292–1294 (1973).
[Crossref]

1929 (1)

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung,” Zeitschrift für Physik 57, 739–746 (1929).
[Crossref]

Adachi, S.

S. Adachi, “Lattice thermal resistivity of III–V compound alloys,” J. Appl. Phys. 54(4), 1844–1848 (1983).
[Crossref]

Afromowitz, M. A.

M. A. Afromowitz, “Thermal conductivity of Ga1−x Alx As alloys,” J. Appl. Phys. 44(3), 1292–1294 (1973).
[Crossref]

Anderson, E. H.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Bagci, T.

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).

Ben-Abdallah, P.

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112, 044301 (2014).
[Crossref]

Bertness, K. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[Crossref]

Biehs, S.-A.

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112, 044301 (2014).
[Crossref]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[Crossref]

Buchwald, M. I.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78, 1030 (1997).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Butov, L. V.

A. A. High, A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A. C. Gossard, “Indirect excitons in elevated traps,” Nano Lett. 9(5), 2094–2098 (2009).
[Crossref] [PubMed]

L. V. Butov, A. Imamoglu, A. V. Mintsev, K. L. Campman, and A. C. Gossard, “Photoluminescence kinetics of indirect excitons in GaAs/Alx Ga1−x As coupled quantum wells,” Phys. Rev. B 59, 1625–1628 (1999).
[Crossref]

Campman, K. L.

L. V. Butov, A. Imamoglu, A. V. Mintsev, K. L. Campman, and A. C. Gossard, “Photoluminescence kinetics of indirect excitons in GaAs/Alx Ga1−x As coupled quantum wells,” Phys. Rev. B 59, 1625–1628 (1999).
[Crossref]

Chen, R.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
[Crossref] [PubMed]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, “Manipulating atoms with photons,” Physica Scripta 1998, 33 (1998).
[Crossref]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
[Crossref]

Cornell, E. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[Crossref]

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
[Crossref]

Craford, M. G.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
[Crossref]

Di Lieto, A.

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[Crossref]

Distel, J.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[Crossref]

Eberl, K.

D. W. Snoke, V. Negoita, and K. Eberl, “Energy shifts of indirect excitons in coupled quantum wells,” J. Lumin. 87, 157–161 (2000).
[Crossref]

Edwards, B. C.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78, 1030 (1997).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Epler, J. E.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
[Crossref]

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007).
[Crossref]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92, 247403 (2004).
[Crossref]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78, 1030 (1997).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley, 2009).
[Crossref]

Erdogan, T.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[Crossref]

Florez, L. T.

J. E. Golub, K. Kash, J. P. Harbison, and L. T. Florez, “Long-lived spatially indirect excitons in coupled GaAs/Alx Ga1−x As quantum wells,” Phys. Rev. B 41, 8564 (1990).
[Crossref]

Fox, A. M.

A. M. Fox, Optical Properties of Solids (Oxford University, 2001).

Gardner, N. F.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
[Crossref]

Gauck, H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[Crossref]

Gfroerer, T. H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[Crossref]

Golub, J. E.

J. E. Golub, K. Kash, J. P. Harbison, and L. T. Florez, “Long-lived spatially indirect excitons in coupled GaAs/Alx Ga1−x As quantum wells,” Phys. Rev. B 41, 8564 (1990).
[Crossref]

Gosnell, T. R.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78, 1030 (1997).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Gossard, A. C.

A. A. High, A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A. C. Gossard, “Indirect excitons in elevated traps,” Nano Lett. 9(5), 2094–2098 (2009).
[Crossref] [PubMed]

L. V. Butov, A. Imamoglu, A. V. Mintsev, K. L. Campman, and A. C. Gossard, “Photoluminescence kinetics of indirect excitons in GaAs/Alx Ga1−x As coupled quantum wells,” Phys. Rev. B 59, 1625–1628 (1999).
[Crossref]

Greenfield, S. R.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[Crossref]

Hall, D. G.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[Crossref]

Hammack, A. T.

A. A. High, A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A. C. Gossard, “Indirect excitons in elevated traps,” Nano Lett. 9(5), 2094–2098 (2009).
[Crossref] [PubMed]

Hanson, M.

A. A. High, A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A. C. Gossard, “Indirect excitons in elevated traps,” Nano Lett. 9(5), 2094–2098 (2009).
[Crossref] [PubMed]

Harbison, J. P.

J. E. Golub, K. Kash, J. P. Harbison, and L. T. Florez, “Long-lived spatially indirect excitons in coupled GaAs/Alx Ga1−x As quantum wells,” Phys. Rev. B 41, 8564 (1990).
[Crossref]

Harris, J. S.

A. Harwit and J. S. Harris, “Observation of Stark shifts in quantum well intersubband transitions,” Appl. Phys. Lett. 50, 685–687 (1987).
[Crossref]

Harwit, A.

A. Harwit and J. S. Harris, “Observation of Stark shifts in quantum well intersubband transitions,” Appl. Phys. Lett. 50, 685–687 (1987).
[Crossref]

High, A. A.

A. A. High, A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A. C. Gossard, “Indirect excitons in elevated traps,” Nano Lett. 9(5), 2094–2098 (2009).
[Crossref] [PubMed]

Hvam, J. M.

D. Oberhauser, K.-H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

Imamoglu, A.

L. V. Butov, A. Imamoglu, A. V. Mintsev, K. L. Campman, and A. C. Gossard, “Photoluminescence kinetics of indirect excitons in GaAs/Alx Ga1−x As coupled quantum wells,” Phys. Rev. B 59, 1625–1628 (1999).
[Crossref]

Ivanov, A. L.

A. A. High, A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A. C. Gossard, “Indirect excitons in elevated traps,” Nano Lett. 9(5), 2094–2098 (2009).
[Crossref] [PubMed]

Kash, K.

J. E. Golub, K. Kash, J. P. Harbison, and L. T. Florez, “Long-lived spatially indirect excitons in coupled GaAs/Alx Ga1−x As quantum wells,” Phys. Rev. B 41, 8564 (1990).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys. 100, 113116 (2006).
[Crossref]

King, O.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Kiršanske, G.

L. Midolo, T. Pregnolato, G. Kiršanskė, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” arXiv preprint arXiv1506.00376 (2015).

Klingshirn, C.

D. Oberhauser, K.-H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

Krames, M. R.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
[Crossref]

Li, D.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
[Crossref] [PubMed]

Liu, J.

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).

Lodahl, P.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Mashanovitch, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
[Crossref]

Melgaard, S. D.

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[Crossref]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Midolo, L.

L. Midolo, T. Pregnolato, G. Kiršanskė, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” arXiv preprint arXiv1506.00376 (2015).

Mintsev, A. V.

L. V. Butov, A. Imamoglu, A. V. Mintsev, K. L. Campman, and A. C. Gossard, “Photoluminescence kinetics of indirect excitons in GaAs/Alx Ga1−x As coupled quantum wells,” Phys. Rev. B 59, 1625–1628 (1999).
[Crossref]

Mouchliadis, L.

A. A. High, A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A. C. Gossard, “Indirect excitons in elevated traps,” Nano Lett. 9(5), 2094–2098 (2009).
[Crossref] [PubMed]

Mungan, C. E.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78, 1030 (1997).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Naesby, A.

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).

Negoita, V.

D. W. Snoke, V. Negoita, and K. Eberl, “Energy shifts of indirect excitons in coupled quantum wells,” J. Lumin. 87, 157–161 (2000).
[Crossref]

Oberhauser, D.

D. Oberhauser, K.-H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

Pantke, K.-H.

D. Oberhauser, K.-H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

Polzik, E. S.

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).

Pregnolato, T.

L. Midolo, T. Pregnolato, G. Kiršanskė, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” arXiv preprint arXiv1506.00376 (2015).

Pringsheim, P.

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung,” Zeitschrift für Physik 57, 739–746 (1929).
[Crossref]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Renn, M. J.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[Crossref]

Rooks, M. J.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[Crossref]

Seletskiy, D. V.

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[Crossref]

Sheik-Bahae, M.

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92, 247403 (2004).
[Crossref]

R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley, 2009).
[Crossref]

Sigalas, M. M.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
[Crossref]

Simmons, J. A.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
[Crossref]

Snoke, D. W.

D. W. Snoke, V. Negoita, and K. Eberl, “Energy shifts of indirect excitons in coupled quantum wells,” J. Lumin. 87, 157–161 (2000).
[Crossref]

Stobbe, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).

L. Midolo, T. Pregnolato, G. Kiršanskė, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” arXiv preprint arXiv1506.00376 (2015).

Thiede, J.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[Crossref]

Tighineanu, P.

P. Tighineanu, “Electroabsorption of highly confined systems,” Master’s thesis, Karlsruhe Institute of Technology (2011).

Tonelli, M.

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[Crossref]

Usami, K.

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Weimann, G.

D. Oberhauser, K.-H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

Wendt, J. R.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
[Crossref]

Wicks, G. W.

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[Crossref]

Wierer, J. J.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
[Crossref]

Xiong, Q.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
[Crossref] [PubMed]

Appl. Phys. A (1)

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
[Crossref]

Appl. Phys. Lett. (5)

T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
[Crossref]

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885–3887 (2004).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).

A. Harwit and J. S. Harris, “Observation of Stark shifts in quantum well intersubband transitions,” Appl. Phys. Lett. 50, 685–687 (1987).
[Crossref]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).
[Crossref]

J. Appl. Phys. (4)

S. Adachi, “Lattice thermal resistivity of III–V compound alloys,” J. Appl. Phys. 54(4), 1844–1848 (1983).
[Crossref]

M. A. Afromowitz, “Thermal conductivity of Ga1−x Alx As alloys,” J. Appl. Phys. 44(3), 1292–1294 (1973).
[Crossref]

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys. 100, 113116 (2006).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

J. Lumin. (1)

D. W. Snoke, V. Negoita, and K. Eberl, “Energy shifts of indirect excitons in coupled quantum wells,” J. Lumin. 87, 157–161 (2000).
[Crossref]

Nano Lett. (1)

A. A. High, A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A. C. Gossard, “Indirect excitons in elevated traps,” Nano Lett. 9(5), 2094–2098 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[Crossref]

Nature (2)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (3)

L. V. Butov, A. Imamoglu, A. V. Mintsev, K. L. Campman, and A. C. Gossard, “Photoluminescence kinetics of indirect excitons in GaAs/Alx Ga1−x As coupled quantum wells,” Phys. Rev. B 59, 1625–1628 (1999).
[Crossref]

J. E. Golub, K. Kash, J. P. Harbison, and L. T. Florez, “Long-lived spatially indirect excitons in coupled GaAs/Alx Ga1−x As quantum wells,” Phys. Rev. B 41, 8564 (1990).
[Crossref]

D. Oberhauser, K.-H. Pantke, J. M. Hvam, G. Weimann, and C. Klingshirn, “Exciton scattering in quantum wells at low temperatures,” Phys. Rev. B 47, 6827 (1993).
[Crossref]

Phys. Rev. Lett. (3)

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92, 247403 (2004).
[Crossref]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78, 1030 (1997).
[Crossref]

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112, 044301 (2014).
[Crossref]

Physica Scripta (1)

C. Cohen-Tannoudji, “Manipulating atoms with photons,” Physica Scripta 1998, 33 (1998).
[Crossref]

Rev. Mod. Phys. (2)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

Zeitschrift für Physik (1)

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung,” Zeitschrift für Physik 57, 739–746 (1929).
[Crossref]

Other (5)

R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley, 2009).
[Crossref]

P. Tighineanu, “Electroabsorption of highly confined systems,” Master’s thesis, Karlsruhe Institute of Technology (2011).

L. Midolo, T. Pregnolato, G. Kiršanskė, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” arXiv preprint arXiv1506.00376 (2015).

A. M. Fox, Optical Properties of Solids (Oxford University, 2001).

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Principle of optical refrigeration of a semiconductor with CQWs. Photo-excited indirect EHPs are thermally excited to a higher-energy state with a faster recombination rate (γi indicate the recombination rate of the different states). This process removes thermal energy as photons leave the system with a higher energy than the absorbed photons. (b) Normalized net power deposited on the system Pnet = Pin − Pout as a function of energy spacing between the direct and indirect states for different lifetime ratios. Larger ΔE (cooling efficiency) can be achieved for EHPs with small spatial overlap in the ground state.

Fig. 2
Fig. 2

(a) Four-level scheme characterizing the first few EHP transitions of CQWs. The long-lived indirect EHP state |1⟩ is pumped optically and the two higher-energy direct states |2⟩ and |3⟩ are thermally populated. (b) Design of a realistic structure for achieving optical refrigeration experimentally. The dimensions of the tethers suspending the membrane allows to estimate the thermal resistance and the achievable cooling yield.

Fig. 3
Fig. 3

Membrane design with high cooling efficiency (design 1). (a) Layer structure of the suspended membrane. (b) Computed band diagram for V = 0 V along with the first three electron and hole probability densities. Note that the wavefunctions of e1 and h1 overlap very little in space. The radiative decay rate is directly proportional to the spatial overlap between the electron and hole wavefunctions. This transition has therefore a longer lifetime as compared to the direct transitions e2 → h1 and e1 → h3, which has a larger overlap. (c) Energy levels for the first few transitions. (d) Corresponding lifetimes. (e) Cooling yield as a function of total electric field.

Fig. 4
Fig. 4

Membrane design with optimized cooling yield (design 2). (a) Layer structure of the suspended membrane. (b) Computed band diagram for V = 0 V along with the first two electron- and hole-eigenstate probability densities. (c) Energy levels for the first few transitions. (d) Corresponding lifetimes. (e) Cooling yield as a function of total electric field.

Fig. 5
Fig. 5

Comparison of the parameters of interest for optical refrigeration for the two designs. (a) Energy spacing between the indirect and first direct state ∆E1. (b) Lifetime ratio between the indirect and first excited state γ21. (c) Absorption of the suspended membrane. There is a trade-off between, on the one hand, increasing γ21 and ∆E1, which improve the cooling efficiency and, on the other hand, enhancing the absorption of the membrane, which leads to an increased cooling yield.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d d t ( N 1 N 2 ) = ( γ p 0 ) + ( γ 1 γ ph e β Δ E γ ph γ ph e β Δ E γ 2 γ ph ) ( N 1 N 2 ) = ( 0 0 )
N 2 = γ ph γ p γ ph γ 2 + γ 1 ( γ 2 + γ ph ) exp ( β Δ E ) and N 1 = γ p γ 2 N 2 γ 1 .
N 2 γ p γ 2 + γ 1 exp ( β Δ E ) and N 1 γ p γ 1 ( 1 γ 2 γ 2 + γ 1 exp ( β Δ E ) ) .
d d t ( N 1 N 2 N 3 ) = ( γ p 0 0 ) + M 4 ( N 1 N 2 N 3 ) = ( 0 0 0 )
M 4 ( γ 1 γ nrad γ ph ( ξ 1 + ξ 2 ) γ ph ξ 1 γ ph ξ 2 γ ph γ 2 γ nrad γ ph ( 1 + ξ 2 / ξ 1 ) γ ph ξ 2 / ξ 1 γ ph γ ph γ 3 γ nrad 2 γ ph )

Metrics