Abstract

We demonstrate spiral Bragg grating waveguides (BGWs) on the silicon-on-insulator (SOI) platform for the fundamental transverse magnetic (TM) mode. We also compare TM spiral waveguides to equivalent transverse electric (TE) spiral waveguides and show that the TM spiral waveguides have lower propagation losses. Our spiral waveguides are space-efficient, requiring only areas of 131×131 µm2 to accommodate 4 mm long BGWs, and, thus, are less susceptible to fabrication non-uniformities. Due to the lengths and reduced susceptibility to fabrication non-uniformities, we were able to obtain narrow bandwidth, large extinction ratio (ER) devices, as narrow as 0.09 nm and as large as 52 dB, respectively. Finally, we demonstrate a 4 mm long TM chirped spiral Bragg grating waveguide with a negative, average, group delay slope of −11 ps/nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides

Zhi Zou, Linjie Zhou, Minjuan Wang, Kan Wu, and Jianping Chen
Opt. Express 24(12) 12831-12839 (2016)

60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform

Zhi Zou, Linjie Zhou, Xinwan Li, and Jianping Chen
Opt. Express 23(16) 20784-20795 (2015)

Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process

Xu Wang, Wei Shi, Han Yun, Samantha Grist, Nicolas A. F. Jaeger, and Lukas Chrostowski
Opt. Express 20(14) 15547-15558 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
    [Crossref] [PubMed]
  2. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
    [Crossref] [PubMed]
  3. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
    [Crossref]
  4. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lam-ontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
    [Crossref] [PubMed]
  5. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17, 18371–18380 (2009).
    [Crossref] [PubMed]
  6. B. Ben Bakir, A. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
    [Crossref]
  7. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37, 55–57 (2012).
    [Crossref] [PubMed]
  8. M. Z. Alam, J. S. Aitchsion, and M. Mojahedi, “Compact hybrid TM-pass polarizer for silicon-on-insulator platform,” Appl. Opt. 50, 2294–2298 (2011).
    [Crossref] [PubMed]
  9. Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2, 49–56 (2010).
    [Crossref]
  10. K. Goi, A. Oka, H. Kusaka, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “Low-loss partial rib polarization rotator consisting only of silicon core and silica cladding,” Opt. Lett. 40, 1410–1413 (2015).
    [Crossref] [PubMed]
  11. L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
    [Crossref]
  12. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011).
    [Crossref] [PubMed]
  13. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16, 2628–2635 (2008).
    [Crossref] [PubMed]
  14. H. Yun, J. Flueckiger, Z. Chen, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “A wavelength-selective polarization rotating reflector using a partially-etched asymmetric Bragg grating on an SOI strip waveguide,” in IEEE International Conference on Group IV Photonics (GFP), FA3 (2015).
  15. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
    [Crossref] [PubMed]
  16. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14, 12401–12408 (2006).
    [Crossref] [PubMed]
  17. W. D. Sacher, T. Barwicz, B. J. F. Taylor, and J. K. S. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22, 3777–3786 (2014).
    [Crossref] [PubMed]
  18. W. Sacher, Y. Huang, D. Liang, T. Barwicz, J. Mikkelsen, B. Taylor, G.-Q. Lo, and J. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communications Conference and Exhibition (OFC), Th1A.3 (2014).
  19. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
    [Crossref] [PubMed]
  20. L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
    [Crossref]
  21. S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19, 11780–11785 (2011).
    [Crossref] [PubMed]
  22. Z. Zou, L. Zhou, X. Li, and J. Chen, “Channel-spacing tunable silicon comb filter using two linearly chirped Bragg gratings,” Opt. Express 22, 19513–19522 (2014).
    [Crossref] [PubMed]
  23. W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39, 701–703 (2014).
    [Crossref] [PubMed]
  24. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21, 25120–25147 (2013).
    [Crossref] [PubMed]
  25. K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express 19, 19514–19522 (2011).
    [Crossref] [PubMed]
  26. X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290 (2011).
  27. Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, paper BW2E.3 (2012).
    [Crossref]
  28. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
    [Crossref]
  29. G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–8 (2011).
  30. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
    [Crossref] [PubMed]
  31. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.37.
  32. J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
    [Crossref] [PubMed]
  33. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
    [Crossref]
  34. X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh4F.8.
  35. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express 21, 8953–8963 (2013).
    [Crossref] [PubMed]
  36. Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.
  37. A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. LaRochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21, 23145–23159 (2013).
    [Crossref] [PubMed]
  38. M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.
  39. D.-X. Xu, A. Delâge, J. H. Schmid, R. Ma, S. Wang, J. Lapointe, M. Vachon, P. Cheben, and S. Janz, “Selecting the polarization in silicon photonic wire components,” in Proc. SPIE, Silicon Photonics VII, 82660G (2012).
    [Crossref]
  40. Solutions Lumerical Inc., “FDTD solutions,” https://www.lumerical.com/tcad-products/fdtd .
  41. S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett. 35, 3477–3479 (2010).
    [Crossref] [PubMed]
  42. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in curved waveguides,” in Annual Meeting of IEEE Photonics Society, ThU3, (2010).
  43. A. Ikhlef, R. Hedara, and M. Chikh-Bled, “Uniform fiber Bragg grating modeling and simulation used matrix transfer method,” Int. J. Comput. Sci., 9, 368–374 (2012).
  44. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC press, 1993).
  45. D. M. Sullivan, Electromagnetic Simulation using the FDTD Method (John Wiley & Sons, 2013), 2nd ed.
    [Crossref]
  46. X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
    [Crossref] [PubMed]
  47. D. Flanders, H. Kogelnik, R. Schmidt, and C. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24, 194–196 (1974).
    [Crossref]
  48. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), 6th ed.
  49. W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add–drop filter,” Opt. Lett. 38, 3068–3070 (2013).
    [Crossref] [PubMed]
  50. A. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24, 1033–1035 (2012).
    [Crossref]
  51. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.,  B29, 06F309 (2011).
  52. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
    [Crossref] [PubMed]
  53. Y. Zhang, S.A. Yang, E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
    [Crossref] [PubMed]
  54. M. Verbist, W. Bogaerts, and D. Van Thourhout, “Design of weak 1-D Bragg grating filters in SOI waveguides using volume holography techniques,” J. Lightwave Technol. 32, 1915–1920 (2014).
    [Crossref]
  55. A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. LaRochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21, 23145–23159 (2013).
    [Crossref] [PubMed]
  56. A. D. Simard, M. J. Strain, L. Meriggi, M. Sorel, and S. LaRochelle, “Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses,” Opt. Lett. 40,736–739 (2015).
    [Crossref] [PubMed]

2015 (3)

2014 (7)

M. Verbist, W. Bogaerts, and D. Van Thourhout, “Design of weak 1-D Bragg grating filters in SOI waveguides using volume holography techniques,” J. Lightwave Technol. 32, 1915–1920 (2014).
[Crossref]

W. D. Sacher, T. Barwicz, B. J. F. Taylor, and J. K. S. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22, 3777–3786 (2014).
[Crossref] [PubMed]

Z. Zou, L. Zhou, X. Li, and J. Chen, “Channel-spacing tunable silicon comb filter using two linearly chirped Bragg gratings,” Opt. Express 22, 19513–19522 (2014).
[Crossref] [PubMed]

W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39, 701–703 (2014).
[Crossref] [PubMed]

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

2013 (8)

Y. Zhang, S.A. Yang, E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add–drop filter,” Opt. Lett. 38, 3068–3070 (2013).
[Crossref] [PubMed]

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express 21, 8953–8963 (2013).
[Crossref] [PubMed]

A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. LaRochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21, 23145–23159 (2013).
[Crossref] [PubMed]

M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21, 25120–25147 (2013).
[Crossref] [PubMed]

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. LaRochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21, 23145–23159 (2013).
[Crossref] [PubMed]

2012 (4)

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37, 55–57 (2012).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]

A. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24, 1033–1035 (2012).
[Crossref]

A. Ikhlef, R. Hedara, and M. Chikh-Bled, “Uniform fiber Bragg grating modeling and simulation used matrix transfer method,” Int. J. Comput. Sci., 9, 368–374 (2012).

2011 (9)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.,  B29, 06F309 (2011).

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–8 (2011).

S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19, 11780–11785 (2011).
[Crossref] [PubMed]

J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref] [PubMed]

M. Z. Alam, J. S. Aitchsion, and M. Mojahedi, “Compact hybrid TM-pass polarizer for silicon-on-insulator platform,” Appl. Opt. 50, 2294–2298 (2011).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref] [PubMed]

K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express 19, 19514–19522 (2011).
[Crossref] [PubMed]

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290 (2011).

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011).
[Crossref] [PubMed]

2010 (5)

Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2, 49–56 (2010).
[Crossref]

P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
[Crossref]

S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett. 35, 3477–3479 (2010).
[Crossref] [PubMed]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[Crossref] [PubMed]

B. Ben Bakir, A. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

2009 (1)

2008 (3)

2006 (2)

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14, 12401–12408 (2006).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

1974 (1)

D. Flanders, H. Kogelnik, R. Schmidt, and C. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24, 194–196 (1974).
[Crossref]

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.,  B29, 06F309 (2011).

Aimez, V.

Aitchison, J. S.

Aitchsion, J. S.

Alam, M. Z.

Asghari, M.

Ayache, M.

Ayotte, N.

Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, paper BW2E.3 (2012).
[Crossref]

Azaña, J.

Baehr-Jones, T.

Y. Zhang, S.A. Yang, E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.,  B29, 06F309 (2011).

Baghban, M. A.

Barton, J. S.

Barwicz, T.

W. D. Sacher, T. Barwicz, B. J. F. Taylor, and J. K. S. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22, 3777–3786 (2014).
[Crossref] [PubMed]

W. Sacher, Y. Huang, D. Liang, T. Barwicz, J. Mikkelsen, B. Taylor, G.-Q. Lo, and J. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communications Conference and Exhibition (OFC), Th1A.3 (2014).

Bauters, J. F.

Beaudin, G.

Belhadj, N.

A. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24, 1033–1035 (2012).
[Crossref]

Ben Bakir, B.

B. Ben Bakir, A. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Blumenthal, D. J.

Bogaerts, W.

Bojko, R.

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.,  B29, 06F309 (2011).

Bowers, J. E.

Bruinink, C. M.

Burla, M.

Cheben, P.

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17, 18371–18380 (2009).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lam-ontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

D.-X. Xu, A. Delâge, J. H. Schmid, R. Ma, S. Wang, J. Lapointe, M. Vachon, P. Cheben, and S. Janz, “Selecting the polarization in silicon photonic wire components,” in Proc. SPIE, Silicon Photonics VII, 82660G (2012).
[Crossref]

Chen, J.

Chen, R.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–8 (2011).

Chen, Z.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

H. Yun, J. Flueckiger, Z. Chen, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “A wavelength-selective polarization rotating reflector using a partially-etched asymmetric Bragg grating on an SOI strip waveguide,” in IEEE International Conference on Group IV Photonics (GFP), FA3 (2015).

Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.

Cheung, K. C.

Chikh-Bled, M.

A. Ikhlef, R. Hedara, and M. Chikh-Bled, “Uniform fiber Bragg grating modeling and simulation used matrix transfer method,” Int. J. Comput. Sci., 9, 368–374 (2012).

Chrostowski, L.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21, 25120–25147 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add–drop filter,” Opt. Lett. 38, 3068–3070 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290 (2011).

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.37.

H. Yun, J. Flueckiger, Z. Chen, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “A wavelength-selective polarization rotating reflector using a partially-etched asymmetric Bragg grating on an SOI strip waveguide,” in IEEE International Conference on Group IV Photonics (GFP), FA3 (2015).

X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh4F.8.

Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.

Cohanoschi, I.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

Cortés, L. R.

Dai, D.

de Gyves, A.

B. Ben Bakir, A. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Delage, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Delâge, A.

Densmore, A.

Ding, Y.

Dong, P.

Donzella, V.

Duan, N.

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

Duchesne, D.

Fainman, Y.

Fang, Q.

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

Fard, S. Talebi

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.37.

Fathpour, S.

Fedeli, J.

B. Ben Bakir, A. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Feng, D.

Feng, N.-N.

Flanders, D.

D. Flanders, H. Kogelnik, R. Schmidt, and C. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24, 194–196 (1974).
[Crossref]

Flueckiger, J.

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add–drop filter,” Opt. Lett. 38, 3068–3070 (2013).
[Crossref] [PubMed]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.37.

Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.

H. Yun, J. Flueckiger, Z. Chen, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “A wavelength-selective polarization rotating reflector using a partially-etched asymmetric Bragg grating on an SOI strip waveguide,” in IEEE International Conference on Group IV Photonics (GFP), FA3 (2015).

Fong, J.

Fukuda, H.

Galland, C.

García, J.

Glebov, A.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

Glebov, L.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

Glebova, L.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

Goi, K.

Grist, S.

Grist, S. M.

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.,  B29, 06F309 (2011).

Heck, M. J.

Hedara, R.

A. Ikhlef, R. Hedara, and M. Chikh-Bled, “Uniform fiber Bragg grating modeling and simulation used matrix transfer method,” Int. J. Comput. Sci., 9, 368–374 (2012).

Heideman, R. G.

Ho, S.-T.

Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2, 49–56 (2010).
[Crossref]

Hochberg, M.

Y. Zhang, S.A. Yang, E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.,  B29, 06F309 (2011).

Huang, Y.

W. Sacher, Y. Huang, D. Liang, T. Barwicz, J. Mikkelsen, B. Taylor, G.-Q. Lo, and J. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communications Conference and Exhibition (OFC), Th1A.3 (2014).

Hvam, J. M.

Ikhlef, A.

A. Ikhlef, R. Hedara, and M. Chikh-Bled, “Uniform fiber Bragg grating modeling and simulation used matrix transfer method,” Int. J. Comput. Sci., 9, 368–374 (2012).

Itabashi, S.

Jaeger, N. A. F.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add–drop filter,” Opt. Lett. 38, 3068–3070 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290 (2011).

H. Yun, J. Flueckiger, Z. Chen, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “A wavelength-selective polarization rotating reflector using a partially-etched asymmetric Bragg grating on an SOI strip waveguide,” in IEEE International Conference on Group IV Photonics (GFP), FA3 (2015).

Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.

Janz, S.

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17, 18371–18380 (2009).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lam-ontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

D.-X. Xu, A. Delâge, J. H. Schmid, R. Ma, S. Wang, J. Lapointe, M. Vachon, P. Cheben, and S. Janz, “Selecting the polarization in silicon photonic wire components,” in Proc. SPIE, Silicon Photonics VII, 82660G (2012).
[Crossref]

Jia, L.

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

Jiang, G.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–8 (2011).

Jiang, X.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–8 (2011).

John, D. D.

Khajavikhan, M.

Khan, S.

Kirk, J. T.

Kogelnik, H.

D. Flanders, H. Kogelnik, R. Schmidt, and C. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24, 194–196 (1974).
[Crossref]

Koh, S. C.

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

Krishnamoorthy, A. V.

Kung, C.-C.

Kunz, K. S.

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC press, 1993).

Kusaka, H.

Kwong, D.-L.

Lamontagne, B.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Lam-ontagne, B.

Lantigua, C.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

Lapointe, J.

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17, 18371–18380 (2009).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lam-ontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

D.-X. Xu, A. Delâge, J. H. Schmid, R. Ma, S. Wang, J. Lapointe, M. Vachon, P. Cheben, and S. Janz, “Selecting the polarization in silicon photonic wire components,” in Proc. SPIE, Silicon Photonics VII, 82660G (2012).
[Crossref]

LaRochelle, S.

Latrasse, C.

Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, paper BW2E.3 (2012).
[Crossref]

Leinse, A.

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.,  B29, 06F309 (2011).

Li, M.

Li, X.

Li, Y.

Liang, D.

W. Sacher, Y. Huang, D. Liang, T. Barwicz, J. Mikkelsen, B. Taylor, G.-Q. Lo, and J. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communications Conference and Exhibition (OFC), Th1A.3 (2014).

Liang, H.

Liao, S.

Lim, E.-J.

Lin, C.

Liow, T.-Y.

K. Goi, A. Oka, H. Kusaka, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “Low-loss partial rib polarization rotator consisting only of silicon core and silica cladding,” Opt. Lett. 40, 1410–1413 (2015).
[Crossref] [PubMed]

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

Liu, A.

Liu, L.

Lo, G.

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

Lo, G.-Q.

Lopinski, G.

Lu, Z.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.

Luebbers, R. J.

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC press, 1993).

Lumeau, J.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

Luo, X.

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

Lyan, P.

B. Ben Bakir, A. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Ma, R.

D.-X. Xu, A. Delâge, J. H. Schmid, R. Ma, S. Wang, J. Lapointe, M. Vachon, P. Cheben, and S. Janz, “Selecting the polarization in silicon photonic wire components,” in Proc. SPIE, Silicon Photonics VII, 82660G (2012).
[Crossref]

Meriggi, L.

Mikkelsen, J.

W. Sacher, Y. Huang, D. Liang, T. Barwicz, J. Mikkelsen, B. Taylor, G.-Q. Lo, and J. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communications Conference and Exhibition (OFC), Th1A.3 (2014).

Mischki, T.

Mojahedi, M.

Mookherjea, S.

M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.

Morandotti, R.

Morin, M.

Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, paper BW2E.3 (2012).
[Crossref]

Nezhad, M. P.

Ogawa, K.

Oka, A.

Orobtchouk, R.

B. Ben Bakir, A. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Painchaud, Y.

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express 21, 8953–8963 (2013).
[Crossref] [PubMed]

A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. LaRochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21, 23145–23159 (2013).
[Crossref] [PubMed]

A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. LaRochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21, 23145–23159 (2013).
[Crossref] [PubMed]

A. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24, 1033–1035 (2012).
[Crossref]

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in curved waveguides,” in Annual Meeting of IEEE Photonics Society, ThU3, (2010).

Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, paper BW2E.3 (2012).
[Crossref]

Patel, D.

Picard, M.-J.

Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, paper BW2E.3 (2012).
[Crossref]

Plant, D. V.

Poitras, D.

Pond, J.

Poon, J.

W. Sacher, Y. Huang, D. Liang, T. Barwicz, J. Mikkelsen, B. Taylor, G.-Q. Lo, and J. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communications Conference and Exhibition (OFC), Th1A.3 (2014).

Poon, J. K. S.

Porzier, C.

B. Ben Bakir, A. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Post, E.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Poulin, M.

Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, paper BW2E.3 (2012).
[Crossref]

Qian, W.

Ratner, D. M.

Reid, A.

Roman, A.

B. Ben Bakir, A. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

Rotari, E.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

Rutkowska, K.

Sacher, W.

W. Sacher, Y. Huang, D. Liang, T. Barwicz, J. Mikkelsen, B. Taylor, G.-Q. Lo, and J. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communications Conference and Exhibition (OFC), Th1A.3 (2014).

Sacher, W. D.

Schmid, J.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Schmid, J. H.

Schmidt, R.

D. Flanders, H. Kogelnik, R. Schmidt, and C. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24, 194–196 (1974).
[Crossref]

Schmidt, S. A.

Schneider, M. A.

M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.

Shafiiha, R.

Shank, C.

D. Flanders, H. Kogelnik, R. Schmidt, and C. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24, 194–196 (1974).
[Crossref]

Shi, W.

Shinojima, H.

Simard, A.

A. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24, 1033–1035 (2012).
[Crossref]

Simard, A. D.

Sinclair, W.

Smirnov, V.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

Smolski, O.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

Song, J.

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

Sorel, M.

Strain, M.

Strain, M. J.

Sullivan, D. M.

D. M. Sullivan, Electromagnetic Simulation using the FDTD Method (John Wiley & Sons, 2013), 2nd ed.
[Crossref]

TalebiFard, S.

Tan, D. T. H.

Taylor, B.

W. Sacher, Y. Huang, D. Liang, T. Barwicz, J. Mikkelsen, B. Taylor, G.-Q. Lo, and J. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communications Conference and Exhibition (OFC), Th1A.3 (2014).

Taylor, B. J. F.

Trotter, D. C.

Tsuchizawa, T.

Tu, X.

Vachon, M.

D.-X. Xu, A. Delâge, J. H. Schmid, R. Ma, S. Wang, J. Lapointe, M. Vachon, P. Cheben, and S. Janz, “Selecting the polarization in silicon photonic wire components,” in Proc. SPIE, Silicon Photonics VII, 82660G (2012).
[Crossref]

Vafaei, R.

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290 (2011).

Van Thourhout, D.

Veerasubramanian, V.

Verbist, M.

Waldron, P.

Wang, M.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–8 (2011).

Wang, Q.

Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2, 49–56 (2010).
[Crossref]

Wang, S.

D.-X. Xu, A. Delâge, J. H. Schmid, R. Ma, S. Wang, J. Lapointe, M. Vachon, P. Cheben, and S. Janz, “Selecting the polarization in silicon photonic wire components,” in Proc. SPIE, Silicon Photonics VII, 82660G (2012).
[Crossref]

Wang, X.

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21, 25120–25147 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290 (2011).

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.37.

Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.

X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh4F.8.

Wang, Y.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.37.

H. Yun, J. Flueckiger, Z. Chen, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “A wavelength-selective polarization rotating reflector using a partially-etched asymmetric Bragg grating on an SOI strip waveguide,” in IEEE International Conference on Group IV Photonics (GFP), FA3 (2015).

Watanabe, T.

Watts, M. R.

Wu, Y.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.37.

Xu, D.-X.

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17, 18371–18380 (2009).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lam-ontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

D.-X. Xu, A. Delâge, J. H. Schmid, R. Ma, S. Wang, J. Lapointe, M. Vachon, P. Cheben, and S. Janz, “Selecting the polarization in silicon photonic wire components,” in Proc. SPIE, Silicon Photonics VII, 82660G (2012).
[Crossref]

Yamada, K.

Yang, J.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–8 (2011).

Yang, S.A.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), 6th ed.

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), 6th ed.

Yu, M.

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

Yun, H.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add–drop filter,” Opt. Lett. 38, 3068–3070 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]

H. Yun, J. Flueckiger, Z. Chen, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “A wavelength-selective polarization rotating reflector using a partially-etched asymmetric Bragg grating on an SOI strip waveguide,” in IEEE International Conference on Group IV Photonics (GFP), FA3 (2015).

X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh4F.8.

Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.

Yvind, K.

Zamek, S.

Zhang, F.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.

Zhang, Y.

Zhou, L.

Zhou, Q.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–8 (2011).

Zortman, W. A.

Zou, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Flanders, H. Kogelnik, R. Schmidt, and C. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24, 194–196 (1974).
[Crossref]

IEEE Photon. Technol. Lett. (6)

A. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24, 1033–1035 (2012).
[Crossref]

B. Ben Bakir, A. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22, 739–741 (2010).
[Crossref]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

L. Jia, T.-Y. Liow, J. Song, X. Luo, N. Duan, S. C. Koh, Q. Fang, M. Yu, and G. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photon. Technol. Lett. 25, 2229–2232 (2013).
[Crossref]

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290 (2011).

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–8 (2011).

IEEE Photonics J. (1)

Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2, 49–56 (2010).
[Crossref]

Int. J. Comput. Sci. (1)

A. Ikhlef, R. Hedara, and M. Chikh-Bled, “Uniform fiber Bragg grating modeling and simulation used matrix transfer method,” Int. J. Comput. Sci., 9, 368–374 (2012).

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. (1)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.,  B29, 06F309 (2011).

Opt. Eng. (1)

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “’Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53, 051514 (2014).
[Crossref]

Opt. Express (21)

S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19, 11780–11785 (2011).
[Crossref] [PubMed]

Z. Zou, L. Zhou, X. Li, and J. Chen, “Channel-spacing tunable silicon comb filter using two linearly chirped Bragg gratings,” Opt. Express 22, 19513–19522 (2014).
[Crossref] [PubMed]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17, 18371–18380 (2009).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref] [PubMed]

M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21, 25120–25147 (2013).
[Crossref] [PubMed]

K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express 19, 19514–19522 (2011).
[Crossref] [PubMed]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[Crossref] [PubMed]

J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref] [PubMed]

P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
[Crossref]

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express 21, 8953–8963 (2013).
[Crossref] [PubMed]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16, 2628–2635 (2008).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14, 12401–12408 (2006).
[Crossref] [PubMed]

W. D. Sacher, T. Barwicz, B. J. F. Taylor, and J. K. S. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22, 3777–3786 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

Y. Zhang, S.A. Yang, E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547–15558 (2012).
[Crossref]

A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. LaRochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21, 23145–23159 (2013).
[Crossref] [PubMed]

A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. LaRochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21, 23145–23159 (2013).
[Crossref] [PubMed]

Opt. Lett. (9)

A. D. Simard, M. J. Strain, L. Meriggi, M. Sorel, and S. LaRochelle, “Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses,” Opt. Lett. 40,736–739 (2015).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add–drop filter,” Opt. Lett. 38, 3068–3070 (2013).
[Crossref] [PubMed]

S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett. 35, 3477–3479 (2010).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lam-ontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
[Crossref] [PubMed]

K. Goi, A. Oka, H. Kusaka, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “Low-loss partial rib polarization rotator consisting only of silicon core and silica cladding,” Opt. Lett. 40, 1410–1413 (2015).
[Crossref] [PubMed]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37, 55–57 (2012).
[Crossref] [PubMed]

W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39, 701–703 (2014).
[Crossref] [PubMed]

Other (13)

Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Bragg grating spiral strip waveguide filters for TM modes,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM3I.7.

X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh4F.8.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.37.

Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, paper BW2E.3 (2012).
[Crossref]

H. Yun, J. Flueckiger, Z. Chen, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “A wavelength-selective polarization rotating reflector using a partially-etched asymmetric Bragg grating on an SOI strip waveguide,” in IEEE International Conference on Group IV Photonics (GFP), FA3 (2015).

W. Sacher, Y. Huang, D. Liang, T. Barwicz, J. Mikkelsen, B. Taylor, G.-Q. Lo, and J. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communications Conference and Exhibition (OFC), Th1A.3 (2014).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), 6th ed.

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in curved waveguides,” in Annual Meeting of IEEE Photonics Society, ThU3, (2010).

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC press, 1993).

D. M. Sullivan, Electromagnetic Simulation using the FDTD Method (John Wiley & Sons, 2013), 2nd ed.
[Crossref]

M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.

D.-X. Xu, A. Delâge, J. H. Schmid, R. Ma, S. Wang, J. Lapointe, M. Vachon, P. Cheben, and S. Janz, “Selecting the polarization in silicon photonic wire components,” in Proc. SPIE, Silicon Photonics VII, 82660G (2012).
[Crossref]

Solutions Lumerical Inc., “FDTD solutions,” https://www.lumerical.com/tcad-products/fdtd .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Electric field distributions of (a) the fundamental TE mode and (b) the fundamental TM mode in a 500 nm×220 nm strip waveguide with SiO2 cladding.

Fig. 2.
Fig. 2.

(a) SEM image and (b) schematic of a 4 mm long TM SBGW wrapped into an area of 131×131 µm2. (c) Zoom-in showing the grating period, Λ, the corrugation width, Wcorr = (Wmax-Wmin)/2, and the spacing between two spiral waveguides, g.

Fig. 3.
Fig. 3.

Simulated effective refractive index variations (blue curve) and calculated packing efficiencies (green curve) for spiral waveguides with R0s ranging from 5 µm to 60 µm.

Fig. 4.
Fig. 4.

Simulated transmission spectrum and group delay of the proposed TM C-SBGW. The propagation loss is assumed to be 2 dB/cm.

Fig. 5.
Fig. 5.

SEM images of an U-SBGW. (a) The complete U-SBGW with input and output GCs. (b) Zoom-in of the center of the S-shaped grating waveguide. (c) Zoom-in of the Archimedean spiral grating waveguides.

Fig. 6.
Fig. 6.

Measured transmission spectra, for the both (a) TE and (b) TM spiral waveguides, with lengths of 1 cm, 2 cm, and 3 cm.

Fig. 7.
Fig. 7.

Transmission losses of both the TE and TM spiral waveguides for lengths, ranging from 0.5 cm to 3 cm.

Fig. 8.
Fig. 8.

(a) Measured transmission spectra for the TM U-SBGWs, with grating periods of 432 nm, 438 nm, and 444 nm. The devices have the same corrugation widths, 60 nm and the same lengths, 1 mm. (b) The measured and simulated transmission spectra, where the average neff of the waveguide was adjusted by 0.84×10−3 in the simulation.

Fig. 9.
Fig. 9.

Measured transmission spectra of TM U-SBGWs with various corrugation widths. The grating period of each TM U-SBGW is 432 nm. The grating lengths of the TM U-SBGWs with Wcorr > 40 nm were 1 mm. The TM U-SBGW with Wcorr = 40 nm had a grating length of 3 mm.

Fig. 10.
Fig. 10.

Simulation and experimental results for the Bragg gratings. (a) The Bragg grating’s center wavelength shifts to shorter wavelengths as the corrugation width increases. The vertical offset between simulation and experimental results is due to a fabrication difference as compared to the target waveguide design. (b) The grating strength (coupling coefficient) increases as a function of the corrugation width.

Fig. 11.
Fig. 11.

Measured reflection spectrum of a TM U-SBGW with a corrugation width of 20 nm, a length of 4 mm, and a period of 444 nm.

Fig. 12.
Fig. 12.

Reflection spectrum of the TM C-SBGW. The group delay decreases linearly as the wavelength increases within the passband.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ x S ( θ ) = R 0 sin ( θ ) y S ( θ ) = R 0 ( 1 cos ( θ ) )
{ x A ( θ ) = ( B θ + R c ) cos ( θ ) y A ( θ ) = ( B θ + R c ) sin ( θ )
n e f f c Λ c = n e f f Λ
κ = π n g Δ λ λ 0 2

Metrics