Abstract

We propose monolithic diamond cavities that can be used to convert color-center Fock-state single photons from emission wavelengths to telecommunication bands. We present a detailed theoretical description of the conversion process, analyzing important practical concerns such as nonlinear phase shifts and frequency mismatch. Our analysis predicts sustainable power requirements (≲ 1 W) for a chipscale nonlinear device with high conversion efficiencies.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref] [PubMed]
  2. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [Crossref] [PubMed]
  3. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 94, 127902 (2004).
    [Crossref]
  4. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
    [Crossref]
  5. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
    [Crossref] [PubMed]
  6. L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, “Fault-tolerant quantum communication based on solid-state photon emitters,” Phys. Rev. Lett. 96, 070504 (2006).
    [Crossref] [PubMed]
  7. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref] [PubMed]
  8. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref] [PubMed]
  9. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
    [Crossref] [PubMed]
  10. T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano. 5, 195–199 (2010).
    [Crossref]
  11. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
    [Crossref] [PubMed]
  12. S. Prawer and A. D. Greentree, “Diamond for quantum computing,” Science 320, 1601–1602 (2008).
    [Crossref] [PubMed]
  13. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
    [Crossref] [PubMed]
  14. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
    [Crossref] [PubMed]
  15. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136 (2008).
    [Crossref]
  16. I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
    [Crossref]
  17. I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New J. Phys. 13, 045015 (2011).
    [Crossref]
  18. L. J. Rogers, K. D. Jahnke, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, T. Teraji, J. Isoya, L. P. McGuinness, and F. Jelezko, “Creation of multiple identical single photon emitters in diamond,” http://arxiv.org/abs/1310.3804 (2013).
  19. M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
    [Crossref]
  20. E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
    [Crossref] [PubMed]
  21. C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
    [Crossref] [PubMed]
  22. A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
    [Crossref] [PubMed]
  23. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
    [Crossref] [PubMed]
  24. J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
    [Crossref]
  25. T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
    [Crossref]
  26. N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
    [Crossref] [PubMed]
  27. A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color centre in a diamond cavity,” Nat. Photonics 12, 1578 (2012).
  28. B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
    [Crossref] [PubMed]
  29. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
    [Crossref] [PubMed]
  30. J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).
  31. M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
    [Crossref] [PubMed]
  32. B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
    [Crossref] [PubMed]
  33. M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
    [Crossref] [PubMed]
  34. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photonics 8, 369–374 (2014).
    [Crossref]
  35. M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689 (2009).
    [Crossref]
  36. I. Agha, M. Davanco, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in sinx waveguides,” Opt. Lett. 37, 2997 (2012).
    [Crossref] [PubMed]
  37. Y. Huang, V. Velev, and P. Kumar, “Quantum frequency conversion in nonlinear microcavities,” Opt. Lett. 38, 2119–2121 (2013).
    [Crossref] [PubMed]
  38. C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
    [Crossref] [PubMed]
  39. B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
    [Crossref]
  40. P. D. Drummond, “Electromagnetic quantization in dispersive inhomogeneous nonlinear dielectrics,” Phys. Rev. A 42, 6845–6857 (1990).
    [Crossref] [PubMed]
  41. D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, and S. G. Johnson, “Degenerate four-wave mixing in triply-resonant nonlinear kerr cavities,” Phys. Rev. A 83, 033834 (2011).
    [Crossref]
  42. A. Rodriguez, M. Soljačić, J. D. Joannopulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
    [Crossref] [PubMed]
  43. S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
    [Crossref]
  44. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
    [Crossref]
  45. R. W. Boyd, Nonlinear Optics, (Academic Press, 1992).
  46. E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
    [Crossref]
  47. M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
    [Crossref] [PubMed]
  48. M. Hillery, “An introduction to the quantum theory of nonlinear optics,” Acta Physica Slovaca 1, 1–80 (2009).
    [Crossref]
  49. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref] [PubMed]

2014 (7)

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref] [PubMed]

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photonics 8, 369–374 (2014).
[Crossref]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

2013 (2)

Y. Huang, V. Velev, and P. Kumar, “Quantum frequency conversion in nonlinear microcavities,” Opt. Lett. 38, 2119–2121 (2013).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

2012 (9)

I. Agha, M. Davanco, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in sinx waveguides,” Opt. Lett. 37, 2997 (2012).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color centre in a diamond cavity,” Nat. Photonics 12, 1578 (2012).

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

2011 (4)

D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, and S. G. Johnson, “Degenerate four-wave mixing in triply-resonant nonlinear kerr cavities,” Phys. Rev. A 83, 033834 (2011).
[Crossref]

E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New J. Phys. 13, 045015 (2011).
[Crossref]

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

2010 (3)

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano. 5, 195–199 (2010).
[Crossref]

2009 (3)

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689 (2009).
[Crossref]

M. Hillery, “An introduction to the quantum theory of nonlinear optics,” Acta Physica Slovaca 1, 1–80 (2009).
[Crossref]

2008 (4)

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136 (2008).
[Crossref]

S. Prawer and A. D. Greentree, “Diamond for quantum computing,” Science 320, 1601–1602 (2008).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

2007 (2)

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

A. Rodriguez, M. Soljačić, J. D. Joannopulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref] [PubMed]

2006 (1)

L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, “Fault-tolerant quantum communication based on solid-state photon emitters,” Phys. Rev. Lett. 96, 070504 (2006).
[Crossref] [PubMed]

2004 (2)

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 94, 127902 (2004).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

2002 (4)

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

2001 (2)

2000 (2)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

1997 (1)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[Crossref]

1990 (1)

P. D. Drummond, “Electromagnetic quantization in dispersive inhomogeneous nonlinear dielectrics,” Phys. Rev. A 42, 6845–6857 (1990).
[Crossref] [PubMed]

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Agha, I.

Agio, M.

Aharonovich, I.

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New J. Phys. 13, 045015 (2011).
[Crossref]

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

Akimov, A. V.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

Arend, C.

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

Atatüre, M.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Babinec, T. M.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano. 5, 195–199 (2010).
[Crossref]

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color centre in a diamond cavity,” Nat. Photonics 12, 1578 (2012).

Barth, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Baur, A.

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

Beausoleil, R. G.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color centre in a diamond cavity,” Nat. Photonics 12, 1578 (2012).

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Becher, C.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
[Crossref] [PubMed]

E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Becker, J. N.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Benson, O.

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Beveratos, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Bouwmeester, D.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, (Academic Press, 1992).

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photonics 8, 369–374 (2014).
[Crossref]

Burek, M. J.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

Castelletto, S.

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New J. Phys. 13, 045015 (2011).
[Crossref]

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

Chang, D. E.

Childress, L.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, “Fault-tolerant quantum communication based on solid-state photon emitters,” Phys. Rev. Lett. 96, 070504 (2006).
[Crossref] [PubMed]

Choy, J. T.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

Chu, Y.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[Crossref]

Davanco, M.

de Leon, N. P.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photonics 8, 369–374 (2014).
[Crossref]

Doscher, H.

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Drummond, P. D.

P. D. Drummond, “Electromagnetic quantization in dispersive inhomogeneous nonlinear dielectrics,” Phys. Rev. A 42, 6845–6857 (1990).
[Crossref] [PubMed]

Duan, L. M.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 94, 127902 (2004).
[Crossref]

Dutt, M. V. G.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

Englund, D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Englund, D. E.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

Evans, R.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Fan, S.

S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
[Crossref]

Faraon, A.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color centre in a diamond cavity,” Nat. Photonics 12, 1578 (2012).

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Fischer, M.

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Fu, K. M. C.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color centre in a diamond cavity,” Nat. Photonics 12, 1578 (2012).

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Gaebel, T.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Gali, A.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Gdeke, F.

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

Godde, T.

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Greentree, A. D.

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

S. Prawer and A. D. Greentree, “Diamond for quantum computing,” Science 320, 1601–1602 (2008).
[Crossref] [PubMed]

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Gsell, S.

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Hagemeier, J.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Hannappel, T.

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Hanson, R.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

Hashemi, H.

D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, and S. G. Johnson, “Degenerate four-wave mixing in triply-resonant nonlinear kerr cavities,” Phys. Rev. A 83, 033834 (2011).
[Crossref]

Hatami, F.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Hausmann, B. J.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano. 5, 195–199 (2010).
[Crossref]

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photonics 8, 369–374 (2014).
[Crossref]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

Heeres, E. C.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Hemmer, P.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Hemmer, P. R.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano. 5, 195–199 (2010).
[Crossref]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

Hepp, C.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

Hillery, M.

M. Hillery, “An introduction to the quantum theory of nonlinear optics,” Acta Physica Slovaca 1, 1–80 (2009).
[Crossref]

Hong, W.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Huang, Y.

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Isoya, J.

A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref] [PubMed]

Jacques, V.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Jahnke, K.

A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref] [PubMed]

Jelezko, F.

A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref] [PubMed]

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Jiang, L.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

Joannopoulos, J. D.

D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, and S. G. Johnson, “Degenerate four-wave mixing in triply-resonant nonlinear kerr cavities,” Phys. Rev. A 83, 033834 (2011).
[Crossref]

S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

Joannopulos, J. D.

Johnson, B. C.

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New J. Phys. 13, 045015 (2011).
[Crossref]

Johnson, S. G.

D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, and S. G. Johnson, “Degenerate four-wave mixing in triply-resonant nonlinear kerr cavities,” Phys. Rev. A 83, 033834 (2011).
[Crossref]

A. Rodriguez, M. Soljačić, J. D. Joannopulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
[Crossref]

Kewes, G.

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Khan, M.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano. 5, 195–199 (2010).
[Crossref]

Kim, H.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 94, 127902 (2004).
[Crossref]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[Crossref]

Kipfstuhl, L.

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Kubanek, A.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

Kuhn, A.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

Kumar, P.

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Lauritsen, K.

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

Leifgen, M.

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

Liddy, M. S.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Lochel, B.

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Lonar, M.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

Loncar, M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photonics 8, 369–374 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano. 5, 195–199 (2010).
[Crossref]

M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689 (2009).
[Crossref]

M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136 (2008).
[Crossref]

Lukin, M.

A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref] [PubMed]

Lukin, M. D.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689 (2009).
[Crossref]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, “Fault-tolerant quantum communication based on solid-state photon emitters,” Phys. Rev. Lett. 96, 070504 (2006).
[Crossref] [PubMed]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[Crossref]

Maletinsky, P.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

Markham, M.

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Maze, J.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

Maze, J. R.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano. 5, 195–199 (2010).
[Crossref]

McCallum, J. C.

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New J. Phys. 13, 045015 (2011).
[Crossref]

McCutcheon, M.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

McCutcheon, M. W.

Meesala, S.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Mekis, A.

S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
[Crossref]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Mizuochi, N.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Mtillon, V.

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

Mucklich, F.

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

Müller, T.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Neu, E.

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
[Crossref] [PubMed]

E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Neumann, P.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Nsse, N.

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Oosterkamp, T. H.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Orwa, J.

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

Park, H.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Patel, P.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Pauly, C.

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Petroff, P. M.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Pfaff, W.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Pingault, B.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Poizat, J.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Popa, I.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Prawer, S.

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New J. Phys. 13, 045015 (2011).
[Crossref]

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

S. Prawer and A. D. Greentree, “Diamond for quantum computing,” Science 320, 1601–1602 (2008).
[Crossref] [PubMed]

Quan, Q.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

Ramirez, D.

D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, and S. G. Johnson, “Degenerate four-wave mixing in triply-resonant nonlinear kerr cavities,” Phys. Rev. A 83, 033834 (2011).
[Crossref]

Rempe, G.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

Rempp, F.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Riedrich-Moller, J.

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Riemann, R.

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

Rivoire, K.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Roch, J.-F.

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

Rochman, J.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Rodriguez, A.

Rodriguez, A. W.

D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, and S. G. Johnson, “Degenerate four-wave mixing in triply-resonant nonlinear kerr cavities,” Phys. Rev. A 83, 033834 (2011).
[Crossref]

Rogers, L.

A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref] [PubMed]

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color centre in a diamond cavity,” Nat. Photonics 12, 1578 (2012).

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Schell, A. W.

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Schoengen, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schrder, T.

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

Schreck, M.

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Schulte, C. H. H.

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

Shields, B.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Shields, B. J.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

Simpson, D.

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

Sipahigil, A.

A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref] [PubMed]

Solijacic, M.

D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, and S. G. Johnson, “Degenerate four-wave mixing in triply-resonant nonlinear kerr cavities,” Phys. Rev. A 83, 033834 (2011).
[Crossref]

Soljacic, M.

Solomon, G. S.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Sorensen, A. S.

L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, “Fault-tolerant quantum communication based on solid-state photon emitters,” Phys. Rev. Lett. 96, 070504 (2006).
[Crossref] [PubMed]

Srinivasan, K.

Stacey, A.

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

Steinmetz, D.

E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Steinmüller-Nethl, D.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Sternschulte, H.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Tartakovskii, A. I.

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

Taylor, J. M.

L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, “Fault-tolerant quantum communication based on solid-state photon emitters,” Phys. Rev. Lett. 96, 070504 (2006).
[Crossref] [PubMed]

Teraji, T.

A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref] [PubMed]

Thon, S. M.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Thurston, B.

Togan, E.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

Treussart, F. m. c.

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

Twitchen, D. J.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

van der Sar, T.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Velev, V.

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photonics 8, 369–374 (2014).
[Crossref]

Villing, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Vuckovic, J.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Wandt, M.

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

Waselowski, V.

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

Watanabe, H.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

Wolff, S.

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

Wolters, J.

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Wrachtrup, J.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Yacoby, A.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Yamasaki, S.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Yu, C. L.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Zhang, Y.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano. 5, 195–199 (2010).
[Crossref]

M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689 (2009).
[Crossref]

Zhou, C.

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

Zibrov, A.

A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref] [PubMed]

Zibrov, A. S.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[Crossref]

Acta Physica Slovaca (1)

M. Hillery, “An introduction to the quantum theory of nonlinear optics,” Acta Physica Slovaca 1, 1–80 (2009).
[Crossref]

Appl. Phys. Lett. (2)

J. Wolters, A. W. Schell, G. Kewes, N. Nsse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitterphotonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Comput. Sci. Eng. (1)

S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

Nano Lett. (4)

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lonar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref] [PubMed]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Loncar, “Coupling of nv centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref] [PubMed]

Nano Letters (1)

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Letters 12, 1578–1582 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref] [PubMed]

Nat. Nano. (2)

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano. 5, 195–199 (2010).
[Crossref]

J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano. 7, 69–74 (2012).

Nat. Photonics (1)

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color centre in a diamond cavity,” Nat. Photonics 12, 1578 (2012).

Nature (1)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

Nature Photonics (1)

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photonics 8, 369–374 (2014).
[Crossref]

New J. Phys. (3)

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New J. Phys. 13, 045015 (2011).
[Crossref]

M. Leifgen, T. Schrder, F. Gdeke, R. Riemann, V. Mtillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, and O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014).
[Crossref]

E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (2)

P. D. Drummond, “Electromagnetic quantization in dispersive inhomogeneous nonlinear dielectrics,” Phys. Rev. A 42, 6845–6857 (1990).
[Crossref] [PubMed]

D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, and S. G. Johnson, “Degenerate four-wave mixing in triply-resonant nonlinear kerr cavities,” Phys. Rev. A 83, 033834 (2011).
[Crossref]

Phys. Rev. B (1)

I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. m. c. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B 79, 235316 (2009).
[Crossref]

Phys. Rev. Lett. (14)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

A. Sipahigil, K. Jahnke, L. Rogers, T. Teraji, J. Isoya, A. Zibrov, F. Jelezko, and M. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 94, 127902 (2004).
[Crossref]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[Crossref]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, “Fault-tolerant quantum communication based on solid-state photon emitters,” Phys. Rev. Lett. 96, 070504 (2006).
[Crossref] [PubMed]

C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405 (2014).
[Crossref] [PubMed]

B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).
[Crossref]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012).
[Crossref] [PubMed]

Science (4)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

S. Prawer and A. D. Greentree, “Diamond for quantum computing,” Science 320, 1601–1602 (2008).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Other (2)

L. J. Rogers, K. D. Jahnke, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, T. Teraji, J. Isoya, L. P. McGuinness, and F. Jelezko, “Creation of multiple identical single photon emitters in diamond,” http://arxiv.org/abs/1310.3804 (2013).

R. W. Boyd, Nonlinear Optics, (Academic Press, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of an emitter-cavity system in which a single emitter is embedded in a nonlinear χ(3) cavity supporting four resonant modes at frequencies {ω0 c , ωsc, ωb1 c , ωb2 c }. The eigenstructure of the emitter is represented by a simplified three-level system with states |r⟩, |e⟩, |g⟩. A laser trigger with frequency ωre and intensity ∝ |Ω|2 addresses the emitter states |r⟩ and |e⟩. The photon released from the emitter is collected by the cavity and down-converted to telecom through the four-wave mixing Bragg scattering process (FWM-BS). The latter process obeys the frequency-matching relation ωs +ωb2 = ω0 +ωb1, where ω0 and ωs are the frequencies of the emitter and telecom signals, and ωb1 and ωb2 are the frequencies of the NIR and telecom pump lasers respectively. (b) Alternatively, the single photon (ω0) can be down-converted by the difference frequency generation (DFG) process in which it is broken up into one signal (ωs) and two pump photons (ωb1, ωb2), satisfying the frequency relation: ω0ωb1ωb2 = ωs. Here, we choose the two pump photons to be degenerate, ωb1 = ωb2 = ωb.

Fig. 2
Fig. 2

Schematic of angle-etched diamond ring resonator (refractive index n ≈ 2.41). The resonator has a radius R and a height h. The triangular cross-section has an etch-angle θ. Er components of the fundamental TE0-like modes at frequencies (ωsc, ωb1 c ) and Ez components of the fundamental TM0-like modes at frequencies (ω0 c , ωb2 c ) are also depicted in the picture.

Fig. 3
Fig. 3

Density plot of conversion efficiency F (defined in Eq. (20)) over the pump powers Pb1 and Pb2 for the cavity system discussed in Section 3. Efficiency contours are overlaid on the plot for easy visualization. They help identify the regime of pump powers necessary for high-efficiency conversion.

Fig. 4
Fig. 4

(a) Critical pump power (solid lines, left-axis) and critical efficiency (dashed lines, right-axis) vs. bare-cavity fractional detuning Δ0 c = 1−ω0/ω0 c . Pump power plotted here is the total pump power, P b , total crit = P b 1 crit + P b 2 crit . Two regimes can be identified: a regime with multiple critical points (light red and dark blue colors) and a regime with only one critial point (dark blue only). The former corresponds to the regime where Eq. (22) is valid and the detuning can be compensated by critical pump powers. The latter corresponds to the regime where Eq. (22) is no longer valid and the efficiency falls off rapidly with detuning. (See also text.) (b) same as above except for the detuning Δ s c = ω s c + ω b 2 c ω 0 c ω s c ( ω s c + ω b 2 c + ω 0 c + ω b 1 c ) / 4 .

Fig. 5
Fig. 5

Left panel: a diagrammatic representation of difference frequency generation process (DFG), Right panel: Er and Ez components of a higher-order TE-like mode (for the emitter photon), a fundamental TM0-like mode (for the signal photon) and a fundamental TE0-like mode (for the pump photons). TE and TM characters of the modes are ill-defined since the mirror symmetry in z (the out-of-plane direction perpendicular to the plane of the resonator) is strongly broken. Each mode possesses appreciable in-plane and out-of-plane electric field components, which lead to a non-vanishing β (see Eq. (6)).

Fig. 6
Fig. 6

Phase-matching diagram for the FWM-BS process in a triangular waveguide of h = 0.25a and θ = 60°. The red circle indicates the frequencies used in the design of ring resonator. Inset: fundamental TE0 and TM0 bands computed by MPB. a is an arbitrary normalization length to be chosen later (see text).

Tables (1)

Tables Icon

Table 1 Critical powers and efficiencies.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

= h ¯ ω 0 c a ^ 0 a ^ 0 + h ¯ ω s c a ^ s a ^ s + h ¯ ω 0 σ ^ e e + h ¯ ω r σ ^ r r μ , b h ¯ ω μ c α μ b | a b | 2 a ^ μ a ^ μ + l h ¯ ω l c ( 1 α l b | a b | 2 ) a ^ l a ^ l + h ¯ Ω ( t ) e i ω r e t σ ^ e r + h ¯ Ω * ( t ) e i ω r e t σ ^ r e + h ¯ g ZPL σ ^ e g a ^ 0 + h ¯ g ZPL σ ^ g e a ^ 0 h ¯ β a ^ s a ^ 0 e i ( ω b 2 ω b 1 ) t h ¯ β * a ^ 0 a ^ s e i ( ω b 2 ω b 1 ) t + h ¯ l ( g l σ ^ e g a ^ l + g l σ ^ g e a ^ l ) i h ¯ κ 0 2 a ^ 0 a ^ 0 i h ¯ κ s 2 a ^ s a ^ s i h ¯ l ( κ l 2 a ^ l a ^ l ) i h ¯ γ N C 2 σ ^ e e .
d a b 1 d t = i ω b 1 c ( 1 α b b 1 | a b 1 | 2 α b 1 b 2 | a b 2 | 2 ) a b 1 a b 1 τ b 1 + 2 τ s b 1 P b 1 ,
d a b 2 d t = i ω b 2 c ( 1 α b b 2 | a b 2 | 2 α b 1 b 2 | a b 1 | 2 ) a b 2 a b 2 τ b 2 + 2 τ s b 2 P b 2 ,
ω b 1 = ω b 1 c ( 1 α b b 1 | a b 1 | 2 α b 1 b 2 | a b 2 | 2 )
ω b 2 = ω b 2 c ( 1 α b b 2 | a b 2 | 2 α b 1 b 2 | a b 1 | 2 ) ,
β = 3 4 ω 0 c ω 0 c ( 2 τ b 1 2 2 τ b 2 2 τ s b 1 τ s b 2 ) P b 1 P b 2 d V ε 0 { χ x x y y ( E s * E 0 ) ( E b 1 E b 2 * ) + χ x y x y ( E s * E b 1 ) ( E 0 E b 2 * ) + χ x y y x ( E s * E b 2 * ) ( E 0 E b 1 * ) } d V ε 0 | E 0 | 2 d V ε s | E s | 2 d V ε b 1 | E b 1 | 2 d V ε b 1 | E b 2 | 2
α μ b = 3 4 d V ε 0 { χ x x y y | E μ | 2 | E b | 2 + χ x y x y | E μ E b * | 2 + χ x y y x | E μ E b | 2 } ( d V ε 0 | E μ | 2 ) ( d V ε b | E b | 2 )
α b b = 3 8 d V ε 0 { ( χ x y x y + χ x y y x ) | E b E b * | 2 + χ x x y y | E b E b | 2 } ( d V ε b | E b | 2 ) 2
α b 1 b 2 = 3 4 d V ε 0 { χ x x y y | E b 1 E b 2 * | 2 + χ x y x y | E b 1 E b 2 | 2 + χ x y y x | E b 1 | 2 | E b 2 | 2 } ( d V ε b 1 | E b 1 | 2 ) ( d V ε b 2 | E b 2 | 2 ) .
| Ψ ( 0 ) = | r , 0 0 , 0 s , 0 l .
| Ψ ( t ) = c r ( t ) e i ω r t | r , 0 0 , 0 s , 0 l + c e ( t ) e i ω 0 t | e , 0 0 , 0 s , 0 l + c 0 ( t ) e i ω 0 t | g , 1 0 , 0 s , 0 l + c s ( t ) e i ω s t | g , 0 0 , 1 s , 0 l
c ˙ r = i Ω * ( t ) c e
c ˙ e = i Ω ( t ) c r i g ZPL c 0 i l g l c l γ NC 2 c e
c ˙ 0 = i δ 0 c c 0 i g ZPL c e i β * c s κ 0 2 c 0
c ˙ s = i δ s c c s i β c 0 κ s 2 c s
c ˙ l = i g l c e κ l 2 c l
δ 0 c = ω 0 c ( 1 α 0 b 1 | a b 1 | 2 α 0 b 2 | a b 2 | 2 ) ω 0
δ s c = ω s c ( 1 α s b 1 | a b 1 | 2 α s b 2 | a b 2 | 2 ) ( ω 0 + ω b 1 ω b 2 ) .
F = d t κ s s | c s | 2 d t ( κ s | c s | 2 + κ 0 | c 0 | 2 + l κ l | c l | 2 + γ NC | c e | 2 )
= 4 C | β | 2 κ 0 κ s s 16 | β | 2 + 4 | β | 2 ( ( 2 + C ) κ 0 κ s 8 δ 0 c δ s c ) + ( 4 δ 0 c 2 + ( 1 + C ) κ 0 2 ) ( 4 δ s c 2 + κ s 2 ) .
C = 4 g ZPL 2 κ 0 ( l 4 g l 2 κ l + γ NC ) ,
F max = ( 1 + 2 C 2 1 C + 1 C 2 ) Q s Q s s ,
δ 0 c crit = δ s c crit = ± 1 2 κ 0 κ 0 ( 4 1 + C | β | 2 ( 1 + C ) κ 0 κ s ) .
δ 0 c crit = δ s c crit = 0 ,
| β | crit = ( 1 + C ) 1 / 4 2 ω 0 c ω s c Q 0 Q s .
F P b 1 = 0 , F P b 2 = 0.
| β | = 0.120 ( μ J ) 1 ω 0 c ω s c ( 2 τ b 1 2 τ s b 1 2 τ b 2 2 τ s b 2 ) P b 1 P b 2
α 0 b 1 = 0.114 ( μ J ) 1 , α 0 b 2 = 0.425 ( μ J ) 1 ,
α s b 1 = 0.215 ( μ J ) 1 , α s b 2 = 0.126 ( μ J ) 1 ,
α b b 1 = 0.099 ( μ J ) 1 , α b b 2 = 0.208 ( μ J ) 1 ,
α b 1 b 2 = 0.114 ( μ J ) 1 .
C = 4 g ZPL 2 κ 0 γ ( l 4 g l 2 κ l γ + γ NC γ ) 1 ,
l 4 g l 2 κ l γ + γ NC γ 1 or
C 4 g ZPL 2 κ 0 γ
δ U NL = 1 2 d V E * ( ω ) P NL ( ω ) .
P i NL ( ω s ) = D ε 0 χ i j k l ( 3 ) ( ω s ; ω 0 , ω b 1 , ω b 2 ) E 0 j E b 1 k E b 2 l * ,
d V E μ * ( ω ) ε E μ ( ω ) = 1 2 h ¯ ω μ
d V E b * ( ω ) ε E b ( ω ) = 1 2 | a b | 2
c ˙ r = ( i δ r κ r 2 ) c r ,
κ r = | Ω | 2 γ ( 1 4 | β | 2 C κ 0 κ s 16 | β | 2 + 8 | β | 2 ( κ 0 κ s ( 1 + C ) 4 δ 0 c δ s c ) + ( 4 δ 0 c 2 + ( 1 + C ) 2 κ 0 2 ) ( 4 δ s c 2 + κ s 2 ) ) .
δ k ( f 1 , f 2 , f 3 , f 4 ) = k 1 + k 2 k 3 k 4 .

Metrics