Abstract

We propose a new approach to broadband Stimulated Raman Scattering (SRS) spectroscopy and microscopy based on time-domain Fourier transform (FT) detection of the stimulated Raman gain (SRG) spectrum. We generate two phase-locked replicas of the Stokes pulse after the sample using a passive birefringent interferometer and measure by the FT technique both the Stokes and the SRG spectra. Our approach blends the very high sensitivity of single-channel lock-in balanced detection with the spectral coverage and resolution afforded by FT spectroscopy. We demonstrate our method by measuring the SRG spectra of different compounds and performing broadband SRS imaging on inorganic blends.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher

Francesco Saltarelli, Vikas Kumar, Daniele Viola, Francesco Crisafi, Fabrizio Preda, Giulio Cerullo, and Dario Polli
Opt. Express 24(19) 21264-21275 (2016)

Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy

Marco Andreana, Marie-Andrée Houle, Douglas J. Moffatt, Andrew Ridsdale, Edlef Buettner, François Légaré, and Albert Stolow
Opt. Express 23(22) 28119-28131 (2015)

Broadband hyperspectral stimulated Raman scattering microscopy with a parabolic fiber amplifier source

Benjamin Figueroa, Walter Fu, Tai Nguyen, Kseniya Shin, Bryce Manifold, Frank Wise, and Dan Fu
Biomed. Opt. Express 9(12) 6116-6131 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Ghomi, Applications of Raman Spectroscopy to Biology: from Basic Studies to Disease Diagnosis (IOS, 2012).
  2. H. Kano, H. Segawa, P. Leproux, and V. Couderc, “Linear and nonlinear Raman microspectroscopy: history, instrumentation, and applications,” Opt. Rev. 21(6), 752–761 (2014).
    [Crossref]
  3. C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.) 134(6), 1046–1057 (2009).
    [Crossref] [PubMed]
  4. G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic, 1996).
  5. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
    [Crossref] [PubMed]
  6. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  7. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  8. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
    [Crossref]
  9. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  10. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  11. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
    [Crossref] [PubMed]
  12. H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
    [Crossref]
  13. B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
    [Crossref]
  14. R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
    [Crossref] [PubMed]
  15. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref] [PubMed]
  16. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
    [Crossref] [PubMed]
  17. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref] [PubMed]
  18. M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
    [Crossref]
  19. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
    [Crossref] [PubMed]
  20. L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
    [Crossref] [PubMed]
  21. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
    [Crossref]
  22. S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
    [Crossref] [PubMed]
  23. K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
    [Crossref] [PubMed]
  24. K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe-light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
    [Crossref]
  25. C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
    [Crossref] [PubMed]
  26. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
    [Crossref]
  27. E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated Raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
    [Crossref] [PubMed]
  28. W. Rock, M. Bonn, and S. H. Parekh, “Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array,” Opt. Express 21(13), 15113–15120 (2013).
    [Crossref] [PubMed]
  29. D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
    [Crossref] [PubMed]
  30. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
    [Crossref]
  31. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
    [Crossref] [PubMed]
  32. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
    [Crossref] [PubMed]
  33. W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13(22), 657–659 (1964).
    [Crossref]
  34. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Elsevier, 2001).
  35. M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
    [Crossref] [PubMed]
  36. G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34(18), 2847–2849 (2009).
    [Crossref] [PubMed]
  37. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
    [Crossref] [PubMed]
  38. J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
    [Crossref] [PubMed]
  39. J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
    [Crossref] [PubMed]
  40. A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
    [Crossref] [PubMed]
  41. K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express 20(13), 13958–13965 (2012).
    [Crossref] [PubMed]
  42. C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
    [Crossref] [PubMed]
  43. J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76(1), 101–110 (2005).
    [Crossref]
  44. P. B. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39(11), 970–976 (1949).
    [Crossref] [PubMed]
  45. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  46. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]

2015 (2)

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

2014 (6)

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe-light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
[Crossref] [PubMed]

H. Kano, H. Segawa, P. Leproux, and V. Couderc, “Linear and nonlinear Raman microspectroscopy: history, instrumentation, and applications,” Opt. Rev. 21(6), 752–761 (2014).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

2013 (5)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

W. Rock, M. Bonn, and S. H. Parekh, “Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array,” Opt. Express 21(13), 15113–15120 (2013).
[Crossref] [PubMed]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

2012 (5)

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express 20(13), 13958–13965 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

2009 (6)

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

2007 (2)

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[Crossref]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

2006 (1)

2005 (3)

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76(1), 101–110 (2005).
[Crossref]

2004 (2)

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[Crossref] [PubMed]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

2003 (2)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1964 (1)

W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13(22), 657–659 (1964).
[Crossref]

1949 (1)

Aamer, K. A.

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

Alexandrou, A.

Andresen, E. R.

Beaurepaire, E.

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Berto, P.

Bonn, M.

Bouma, B. E.

Brida, D.

Camp, C. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Cense, B.

Cerullo, G.

Cheng, J.-X.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Cicerone, M. T.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[Crossref] [PubMed]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Couderc, V.

H. Kano, H. Segawa, P. Leproux, and V. Couderc, “Linear and nonlinear Raman microspectroscopy: history, instrumentation, and applications,” Opt. Rev. 21(6), 752–761 (2014).
[Crossref]

de Boer, J. F.

de Juan, A.

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76(1), 101–110 (2005).
[Crossref]

Dietzek, B.

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.) 134(6), 1046–1057 (2009).
[Crossref] [PubMed]

Eibl, M.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Fellgett, P. B.

Fercher, A.

Freudiger, C.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fu, D.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express 20(13), 13958–13965 (2012).
[Crossref] [PubMed]

Gambetta, A.

Gargallo, R.

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76(1), 101–110 (2005).
[Crossref]

Gilch, P.

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated Raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[Crossref] [PubMed]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Grancini, G.

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Hanke, T.

Hänsch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Helbing, J.

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Hitzenberger, C.

Holtom, G.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Huber, R.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated Raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[Crossref] [PubMed]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express 20(13), 13958–13965 (2012).
[Crossref] [PubMed]

Jaumot, J.

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76(1), 101–110 (2005).
[Crossref]

Ji, M.

Joffre, M.

Jones, W. J.

W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13(22), 657–659 (1964).
[Crossref]

Kanematsu, Y.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kano, H.

H. Kano, H. Segawa, P. Leproux, and V. Couderc, “Linear and nonlinear Raman microspectroscopy: history, instrumentation, and applications,” Opt. Rev. 21(6), 752–761 (2014).
[Crossref]

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Karpf, S.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Kee, T. W.

Kieu, K. Q.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Kishi, T.

Klein, T.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated Raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[Crossref] [PubMed]

Kobayashi, T.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe-light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Kong, L.

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Krafft, C.

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.) 134(6), 1046–1057 (2009).
[Crossref] [PubMed]

Krauss, G.

Kumar, V.

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Lee, S.-Y.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Leitenstorfer, A.

Leitgeb, R.

Leproux, P.

H. Kano, H. Segawa, P. Leproux, and V. Couderc, “Linear and nonlinear Raman microspectroscopy: history, instrumentation, and applications,” Opt. Rev. 21(6), 752–761 (2014).
[Crossref]

Li, J.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Liao, C.-S.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Liu, Y.

Lu, F.-K.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Maiuri, M.

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
[Crossref] [PubMed]

Manzoni, C.

Marangoni, M.

Marx, B.

Meyer, L.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[Crossref]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Motzkus, M.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[Crossref]

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express 20(13), 13958–13965 (2012).
[Crossref] [PubMed]

Nose, K.

Ogilvie, J. P.

Oglesbee, R. A.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Okuda, Y.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe-light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Oriana, A.

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express 20(13), 13958–13965 (2012).
[Crossref] [PubMed]

Parekh, S. H.

Park, B. H.

Pernik, D. R.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Peyghambarian, N.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Picqué, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Pierce, M. C.

Ploetz, E.

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated Raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[Crossref] [PubMed]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Polli, D.

Popp, J.

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.) 134(6), 1046–1057 (2009).
[Crossref] [PubMed]

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Ramponi, R.

Réhault, J.

J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Rigneault, H.

Rock, W.

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Segawa, H.

H. Kano, H. Segawa, P. Leproux, and V. Couderc, “Linear and nonlinear Raman microspectroscopy: history, instrumentation, and applications,” Opt. Rev. 21(6), 752–761 (2014).
[Crossref]

Sell, A.

Selm, R.

Seto, K.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe-light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Slipchenko, M. N.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Stoicheff, B. P.

W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13(22), 657–659 (1964).
[Crossref]

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express 20(13), 13958–13965 (2012).
[Crossref] [PubMed]

Tauler, R.

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76(1), 101–110 (2005).
[Crossref]

Tearney, G. J.

Tokunaga, E.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe-light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Träutlein, D.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Vartiainen, E.

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

von Vacano, B.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[Crossref]

Walker, A. R. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Wang, P.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Wieser, W.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Winterhalder, M.

Xie, X. S.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Yang, W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Zhang, X.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Zumbusch, A.

Analyst (Lond.) (1)

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.) 134(6), 1046–1057 (2009).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

Appl. Phys. B (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Appl. Phys. Lett. (2)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Chemom. Intell. Lab. Syst. (1)

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76(1), 101–110 (2005).
[Crossref]

J. Am. Chem. Soc. (1)

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

J. Phys. D (1)

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe-light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

J. Raman Spectrosc. (2)

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[Crossref]

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

Light Sci. Appl. (1)

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (11)

M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
[Crossref] [PubMed]

A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
[Crossref] [PubMed]

R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
[Crossref] [PubMed]

E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
[Crossref] [PubMed]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[Crossref] [PubMed]

J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
[Crossref] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34(18), 2847–2849 (2009).
[Crossref] [PubMed]

Opt. Rev. (1)

H. Kano, H. Segawa, P. Leproux, and V. Couderc, “Linear and nonlinear Raman microspectroscopy: history, instrumentation, and applications,” Opt. Rev. 21(6), 752–761 (2014).
[Crossref]

Phys. Rev. Lett. (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13(22), 657–659 (1964).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Science (2)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Other (3)

M. Ghomi, Applications of Raman Spectroscopy to Biology: from Basic Studies to Disease Diagnosis (IOS, 2012).

G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic, 1996).

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Elsevier, 2001).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (2879 KB)      sample response at various Raman frequencies

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup for multiplex SRS with two different detection schemes: (a1) multi-channel detection, based on a dispersive element such as a grating; (a2) FT detection, based on an interferometer. (b) Conceptual scheme for FT-SRS: to measure the SRG spectrum, instead of computing the difference of the two Stokes spectra (with and without the pump), we first obtain the difference of the two interferograms (with and without the pump) using a lock-in amplifier and then we calculate the FT of the SRS interferogram.
Fig. 2
Fig. 2 Experimental setup for FT-SRS. AOM: Acousto-Optic Modulator. DL: Delay Line. OBJ are objectives. DBS: Dichroic beam splitter. LWPF: Long-Wave Pass Filter. TWINS: see text. WP: Wollaston Polarizer. BPD: Balanced photodiodes. ADC: Analog to Digital Converter.
Fig. 3
Fig. 3 (a) Stokes interferogram; (b) blue solid curve: SRS interferogram in isopropanol, demodulated by the lock-in amplifier and filtered using a Gaussian window, orange circles: undersampled SRS interferogram; inset: zoom of the interferograms in the 100-200 fs region. (c) spectrum of the Stokes pulse, obtained by considering the absolute value of the FT of (a); (d) SRG spectra of methanol, obtained by normalizing the absolute value of the FT of (b) by the Stokes spectrum, both in the case of the densely sampled interferogram (blue solid curve) and the undersampled one (orange dashed curve).
Fig. 4
Fig. 4 Broadband SRS spectra of different solvents and a PMMA film measured with the FT technique.
Fig. 5
Fig. 5 (a)-(c) Microscopic images of a mixture of 6-µm PMMA beads and 3-µm PS beads collected at different Raman frequencies: 2910 cm−1 (a) in partial resonance with both materials, 2956 cm−1 (b) in resonance with the PMMA beads, and 3066 cm−1 (c) in resonance with the PS beads. See Visualization 1 in the Supplementary Materials online for a movie of the entire sample response. (d) Broadband SRG spectra collected in the center of a PMMA bead (upper black curve) and of a PS bead (lower red curve). Six stars indicate the proper identification of the three characteristic Raman peaks of both PMMA and of PS present in this high-frequency CH stretching region. Gray areas indicate the three spectral regions selected to plot the three images in panels (a)-(c). (e) Overlay image of PMMA (blue) and PS (yellow) concentrations obtained using multivariate statistical analysis.

Metrics