Abstract

We report on the investigation of bi-directional terahertz-to-infrared (THz-to-IR) radiation from a metal film coated on a substrate with randomly ordered pore arrays by irradiation of femtosecond laser pulses. THz-to-IR radiation was observed both for front-side excitation (laser incident on the metal surface) and for rear-side excitation (laser incident on the substrate). In both cases, the radiation was observed both in the propagation direction of the laser beam and in the reverse direction. Considering these findings, we propose a thermal emission mechanism based on the production of surface plasmons, either delocalized (through phase-matched excitation) or localized (through surface roughness) at the air/metal and metal/substrate interfaces.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz-to-infrared emission through laser excitation of surface plasmons in metal films with porous nanostructures

Liangliang Zhang, Ji Zhao, Tong Wu, Cunlin Zhang, and X.-C. Zhang
Opt. Express 23(13) 17185-17190 (2015)

Intense thermal terahertz-to-infrared emission from random metallic nanostructures under femtosecond laser irradiation

Liangliang Zhang, Kaijun Mu, Ji Zhao, Tong Wu, Hai Wang, Cunlin Zhang, and X.-C. Zhang
Opt. Express 23(11) 14211-14218 (2015)

Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer

Gopakumar Ramakrishnan, Nishant Kumar, Paul C. M. Planken, Daisuke Tanaka, and Kotaro Kajikawa
Opt. Express 20(4) 4067-4073 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  3. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  4. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16(21), 17039–17051 (2008).
    [Crossref] [PubMed]
  5. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [Crossref] [PubMed]
  6. A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
    [Crossref]
  7. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  8. B. Clough, J. Dai, and X.-C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
    [Crossref]
  9. G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17(4), 2470–2480 (2009).
    [Crossref] [PubMed]
  10. G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
    [Crossref] [PubMed]
  11. D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
    [Crossref] [PubMed]
  12. L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
    [Crossref] [PubMed]
  13. L. Zhang, K. Mu, J. Zhao, T. Wu, H. Wang, C. Zhang, and X.-C. Zhang, “Intense thermal terahertz-to-infrared emission from random metallic nanostructures under femtosecond laser irradiation,” Opt. Express 23(11), 14211–14218 (2015).
    [Crossref] [PubMed]
  14. A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
    [Crossref]
  15. A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
    [Crossref] [PubMed]
  16. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
    [Crossref]
  17. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [Crossref] [PubMed]
  18. L. Zhang, J. Zhao, T. Wu, C. Zhang, and X.-C. Zhang, “Terahertz-to-infrared emission through laser excitation of surface plasmons in metal films with porous nanostructures,” Opt. Express 23(13), 17185–17190 (2015).
    [Crossref] [PubMed]
  19. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
    [Crossref]
  20. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539 (1969).
    [Crossref]
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

2015 (2)

2014 (1)

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

2012 (1)

B. Clough, J. Dai, and X.-C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
[Crossref]

2011 (1)

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17(4), 2470–2480 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (2)

A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
[Crossref] [PubMed]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

2005 (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

2004 (1)

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

1994 (1)

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539 (1969).
[Crossref]

Alexander, M.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Barnes, W. L.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Blackshire, J. L.

Bliss, D.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Bohn, M. J.

Chatzakis, I.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Clough, B.

B. Clough, J. Dai, and X.-C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
[Crossref]

Dai, J.

B. Clough, J. Dai, and X.-C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
[Crossref]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539 (1969).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Guo, C.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Hendry, E.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Hochrein, T.

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Hunt, N. T.

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

Jansen, C.

Jin, Y.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Jördens, C.

Koch, M.

Kohns, P.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Kokody, N. G.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Koschny, T.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Krumbholz, N.

Kuzmichev, V. M.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Larkin, J.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Luo, L.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Ma, X. F.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Mu, K.

Niesler, F. B.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Peters, O.

Polyushkin, D. K.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Rice, A.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Salhi, M.

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

Scheller, M.

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Soukoulis, C. M.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Stoik, C. D.

Stone, E. K.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Vieweg, N.

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
[Crossref] [PubMed]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Wang, H.

Wang, J.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Wegener, M.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Welsh, G. H.

G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17(4), 2470–2480 (2009).
[Crossref] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

Wietzke, S.

Wu, T.

Wynne, K.

G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17(4), 2470–2480 (2009).
[Crossref] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

Zhang, C.

Zhang, L.

Zhang, X.-C.

L. Zhang, K. Mu, J. Zhao, T. Wu, H. Wang, C. Zhang, and X.-C. Zhang, “Intense thermal terahertz-to-infrared emission from random metallic nanostructures under femtosecond laser irradiation,” Opt. Express 23(11), 14211–14218 (2015).
[Crossref] [PubMed]

L. Zhang, J. Zhao, T. Wu, C. Zhang, and X.-C. Zhang, “Terahertz-to-infrared emission through laser excitation of surface plasmons in metal films with porous nanostructures,” Opt. Express 23(13), 17185–17190 (2015).
[Crossref] [PubMed]

B. Clough, J. Dai, and X.-C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
[Crossref]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Zhao, J.

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Mater. Today (1)

B. Clough, J. Dai, and X.-C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
[Crossref]

Nano Lett. (1)

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (5)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539 (1969).
[Crossref]

Phys. Rev. B (1)

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

Phys. Rev. Lett. (2)

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a)–(c) SEM images of a sample with a 150-nm-thick metal film. (a) Top view of the metal surface. (b) Cross-sectional view of the metal surface. (c) Top view of the substrate surface. The darkest regions indicate the absence of metal. (d), (e) Schemes of the experimental setups used for measuring the incidence angle ( θ ) dependence and in-plane angular ( φ ) distribution of THz-to-IR radiation. (d) Front-side excitation; the laser is incident on the metal surface. (e) Rear-side excitation; the laser is incident on the substrate. The red arrow indicates the direction of the optical beam.

Fig. 2
Fig. 2

(a), (b) Angular distribution of the THz-to-IR emission from the sample with 150-nm-thick metal-film coating for (a) front-side and (b) rear-side laser irradiation. The red arrow indicates the direction of the optical beam. The solid lines are experimental data. The dashed lines are guides for the eye. (c), (d) The power of the forward (blue data points) and backward (red data points) emission versus the metal-film thickness for the laser irradiation of (c) the front side and (d) the rear side. Figure (c) also displays the absorptivity at 800 nm as a function of film thickness.

Fig. 3
Fig. 3

Power of THz-to-IR radiation versus optical pump energy for front-side (red) and rear-side (blue) laser irradiation. The lines are exponential fitting curves.

Fig. 4
Fig. 4

Measured forward THz-to-IR radiation power as a function of the incidence angle for (a) front-side and (b) rear-side optical laser irradiation. The red symbols correspond to p-polarized laser and the blue ones to s-polarized laser. The blue lines represent the fitting function cos n θ , where n is the order of power dependence of the THz-to-IR radiation.

Metrics