Abstract

The photorefractive (PR) response and dynamics are investigated in a methyl-substituted poly(triarylamine) (PTAA)-based PR composite. The charge transfer complex between PTAA and an added small amount of second acceptor, (tris(8-hydroxyquinolinato)aluminium) Alq3, effectively suppresses the photoconductivity, and thus the sample is able to withstand the dielectric breakdown at a high electric field. The resulting PR response is enhanced at a higher electric field. Sub-millisecond PR response times were observed for both optical diffraction and optical amplification: i.e., 350 μs for optical amplification and 860 μs for optical diffraction observed under 532 nm illumination (0.534 W cm−2) at 60 V μm−1. The response time of optical amplification followed the photocurrent response time of 367 μs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced photorefractivity of a perylene bisimide-sensitized poly(4-(diphenylamino) benzyl acrylate) composite

Tam Van Nguyen, Kenji Kinashi, Wataru Sakai, and Naoto Tsutsumi
Opt. Mater. Express 6(5) 1714-1723 (2016)

Poly(silane)-based high-mobility photorefractive polymers

S. M. Silence, J. C. Scott, F. Hache, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, and W. E. Moerner
J. Opt. Soc. Am. B 10(12) 2306-2312 (1993)

References

  • View by:
  • |
  • |
  • |

  1. S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
    [Crossref]
  2. T. Tsutsui and N. Takada, “Progress in emission efficiency of organic light-emitting diodes: basic understanding and its technical application,” Jpn. J. Appl. Phys. 52(11R), 110001 (2013).
    [Crossref]
  3. W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi A 210(1), 44–65 (2013).
    [Crossref]
  4. Y.-W. Su, S.-C. Lan, and K.-H. Wei, “Organic photovoltaics,” Mater. Today 15(12), 554–562 (2012).
    [Crossref]
  5. W. Cao and J. Xue, “Recent progress in organic photovoltaics: device architecture and optical design,” Energy Environ. Sci. 7(7), 2123–2144 (2014).
    [Crossref]
  6. J. Yu, Y. Zheng, and J. Huang, “Towards high performance organic photovoltaic cells: a review of recent development in organic photovoltaics,” Polymers (Basel) 6(9), 2473–2509 (2014).
    [Crossref]
  7. S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [Crossref] [PubMed]
  8. K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
    [Crossref]
  9. N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
    [Crossref]
  10. C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Grating dynamics in a photorefractive polymer with Alq3 electron traps,” Opt. Express 18(9), 9358–9365 (2010).
    [Crossref] [PubMed]
  11. X.-D. Dang, A. B. Tamayo, J. Seo, C. V. Hoven, B. Walker, and T.-Q. Nguyen, “Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy,” Adv. Funct. Mater. 20(19), 3314–3321 (2010).
    [Crossref]
  12. Y. Shiraishi, K. Adachi, M. Itoh, and T. Hirai, “Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor,” Org. Lett. 11(15), 3482–3485 (2009).
    [Crossref] [PubMed]
  13. P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
    [Crossref]
  14. T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
    [Crossref]
  15. J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space charge gratings in photoconductive polymers,” J. Appl. Phys. 72(5), 1888–1893 (1992).
    [Crossref]
  16. T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
    [Crossref]
  17. L. Kulikovsky, D. Neher, E. Mecher, K. Meerholz, H.-H. Horhold, and O. Ostroverkhova, “Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite,” Phys. Rev. 69(12), 125216 (2004).
    [Crossref]

2015 (1)

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

2014 (3)

W. Cao and J. Xue, “Recent progress in organic photovoltaics: device architecture and optical design,” Energy Environ. Sci. 7(7), 2123–2144 (2014).
[Crossref]

J. Yu, Y. Zheng, and J. Huang, “Towards high performance organic photovoltaic cells: a review of recent development in organic photovoltaics,” Polymers (Basel) 6(9), 2473–2509 (2014).
[Crossref]

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

2013 (4)

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

T. Tsutsui and N. Takada, “Progress in emission efficiency of organic light-emitting diodes: basic understanding and its technical application,” Jpn. J. Appl. Phys. 52(11R), 110001 (2013).
[Crossref]

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi A 210(1), 44–65 (2013).
[Crossref]

2012 (1)

Y.-W. Su, S.-C. Lan, and K.-H. Wei, “Organic photovoltaics,” Mater. Today 15(12), 554–562 (2012).
[Crossref]

2010 (2)

X.-D. Dang, A. B. Tamayo, J. Seo, C. V. Hoven, B. Walker, and T.-Q. Nguyen, “Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy,” Adv. Funct. Mater. 20(19), 3314–3321 (2010).
[Crossref]

C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Grating dynamics in a photorefractive polymer with Alq3 electron traps,” Opt. Express 18(9), 9358–9365 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Shiraishi, K. Adachi, M. Itoh, and T. Hirai, “Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor,” Org. Lett. 11(15), 3482–3485 (2009).
[Crossref] [PubMed]

2008 (1)

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

2004 (1)

L. Kulikovsky, D. Neher, E. Mecher, K. Meerholz, H.-H. Horhold, and O. Ostroverkhova, “Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite,” Phys. Rev. 69(12), 125216 (2004).
[Crossref]

2002 (1)

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

2000 (1)

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

1992 (1)

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space charge gratings in photoconductive polymers,” J. Appl. Phys. 72(5), 1888–1893 (1992).
[Crossref]

Adachi, K.

Y. Shiraishi, K. Adachi, M. Itoh, and T. Hirai, “Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor,” Org. Lett. 11(15), 3482–3485 (2009).
[Crossref] [PubMed]

Bittner, R.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Blanche, P. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Blanche, P.-A.

Brütting, W.

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi A 210(1), 44–65 (2013).
[Crossref]

Buettner, A. V.

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space charge gratings in photoconductive polymers,” J. Appl. Phys. 72(5), 1888–1893 (1992).
[Crossref]

Cao, W.

W. Cao and J. Xue, “Recent progress in organic photovoltaics: device architecture and optical design,” Energy Environ. Sci. 7(7), 2123–2144 (2014).
[Crossref]

Chantharasupawong, P.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Christenson, C. W.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Grating dynamics in a photorefractive polymer with Alq3 electron traps,” Opt. Express 18(9), 9358–9365 (2010).
[Crossref] [PubMed]

Cimrová, V.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Dang, X.-D.

X.-D. Dang, A. B. Tamayo, J. Seo, C. V. Hoven, B. Walker, and T.-Q. Nguyen, “Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy,” Adv. Funct. Mater. 20(19), 3314–3321 (2010).
[Crossref]

Däubler, T. K.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Flores, D.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Frischeisen, J.

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi A 210(1), 44–65 (2013).
[Crossref]

Gu, T.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Hirai, T.

Y. Shiraishi, K. Adachi, M. Itoh, and T. Hirai, “Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor,” Org. Lett. 11(15), 3482–3485 (2009).
[Crossref] [PubMed]

Horhold, H.-H.

L. Kulikovsky, D. Neher, E. Mecher, K. Meerholz, H.-H. Horhold, and O. Ostroverkhova, “Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite,” Phys. Rev. 69(12), 125216 (2004).
[Crossref]

Hoven, C. V.

X.-D. Dang, A. B. Tamayo, J. Seo, C. V. Hoven, B. Walker, and T.-Q. Nguyen, “Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy,” Adv. Funct. Mater. 20(19), 3314–3321 (2010).
[Crossref]

Huang, J.

J. Yu, Y. Zheng, and J. Huang, “Towards high performance organic photovoltaic cells: a review of recent development in organic photovoltaics,” Polymers (Basel) 6(9), 2473–2509 (2014).
[Crossref]

Hummelen, J. C.

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

Itoh, M.

Y. Shiraishi, K. Adachi, M. Itoh, and T. Hirai, “Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor,” Org. Lett. 11(15), 3482–3485 (2009).
[Crossref] [PubMed]

Kinashi, K.

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

Kono, K.

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

Kulikovsky, L.

L. Kulikovsky, D. Neher, E. Mecher, K. Meerholz, H.-H. Horhold, and O. Ostroverkhova, “Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite,” Phys. Rev. 69(12), 125216 (2004).
[Crossref]

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

Lan, S.-C.

Y.-W. Su, S.-C. Lan, and K.-H. Wei, “Organic photovoltaics,” Mater. Today 15(12), 554–562 (2012).
[Crossref]

Leo, K.

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

Li, G.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Lin, W.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Lüssem, B.

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

Masumura, K.

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

Mayr, C.

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi A 210(1), 44–65 (2013).
[Crossref]

Mecher, E.

L. Kulikovsky, D. Neher, E. Mecher, K. Meerholz, H.-H. Horhold, and O. Ostroverkhova, “Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite,” Phys. Rev. 69(12), 125216 (2004).
[Crossref]

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

Meerholz, K.

L. Kulikovsky, D. Neher, E. Mecher, K. Meerholz, H.-H. Horhold, and O. Ostroverkhova, “Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite,” Phys. Rev. 69(12), 125216 (2004).
[Crossref]

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Nair, R. R.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Neher, D.

L. Kulikovsky, D. Neher, E. Mecher, K. Meerholz, H.-H. Horhold, and O. Ostroverkhova, “Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite,” Phys. Rev. 69(12), 125216 (2004).
[Crossref]

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Nguyen, T.-Q.

X.-D. Dang, A. B. Tamayo, J. Seo, C. V. Hoven, B. Walker, and T.-Q. Nguyen, “Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy,” Adv. Funct. Mater. 20(19), 3314–3321 (2010).
[Crossref]

Norwood, R. A.

C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Grating dynamics in a photorefractive polymer with Alq3 electron traps,” Opt. Express 18(9), 9358–9365 (2010).
[Crossref] [PubMed]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Ostroverkhova, O.

L. Kulikovsky, D. Neher, E. Mecher, K. Meerholz, H.-H. Horhold, and O. Ostroverkhova, “Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite,” Phys. Rev. 69(12), 125216 (2004).
[Crossref]

Peyghambarian, N.

C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Grating dynamics in a photorefractive polymer with Alq3 electron traps,” Opt. Express 18(9), 9358–9365 (2010).
[Crossref] [PubMed]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Philip, R.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Reineke, S.

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

Rokutanda, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Sakai, W.

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

Schildkraut, J. S.

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space charge gratings in photoconductive polymers,” J. Appl. Phys. 72(5), 1888–1893 (1992).
[Crossref]

Schmidt, T. D.

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi A 210(1), 44–65 (2013).
[Crossref]

Scholz, B. J.

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi A 210(1), 44–65 (2013).
[Crossref]

Seo, J.

X.-D. Dang, A. B. Tamayo, J. Seo, C. V. Hoven, B. Walker, and T.-Q. Nguyen, “Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy,” Adv. Funct. Mater. 20(19), 3314–3321 (2010).
[Crossref]

Shinkai, H.

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

Shiraishi, Y.

Y. Shiraishi, K. Adachi, M. Itoh, and T. Hirai, “Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor,” Org. Lett. 11(15), 3482–3485 (2009).
[Crossref] [PubMed]

St Hilaire, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Su, Y.-W.

Y.-W. Su, S.-C. Lan, and K.-H. Wei, “Organic photovoltaics,” Mater. Today 15(12), 554–562 (2012).
[Crossref]

Takada, N.

T. Tsutsui and N. Takada, “Progress in emission efficiency of organic light-emitting diodes: basic understanding and its technical application,” Jpn. J. Appl. Phys. 52(11R), 110001 (2013).
[Crossref]

Tamayo, A. B.

X.-D. Dang, A. B. Tamayo, J. Seo, C. V. Hoven, B. Walker, and T.-Q. Nguyen, “Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy,” Adv. Funct. Mater. 20(19), 3314–3321 (2010).
[Crossref]

Tay, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Tetard, L.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Thomas, J.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Grating dynamics in a photorefractive polymer with Alq3 electron traps,” Opt. Express 18(9), 9358–9365 (2010).
[Crossref] [PubMed]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Thomschke, M.

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

Tsutsui, T.

T. Tsutsui and N. Takada, “Progress in emission efficiency of organic light-emitting diodes: basic understanding and its technical application,” Jpn. J. Appl. Phys. 52(11R), 110001 (2013).
[Crossref]

Tsutsumi, N.

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

Tunç, A. V.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Voorakaranam, R.

C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Grating dynamics in a photorefractive polymer with Alq3 electron traps,” Opt. Express 18(9), 9358–9365 (2010).
[Crossref] [PubMed]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Walker, B.

X.-D. Dang, A. B. Tamayo, J. Seo, C. V. Hoven, B. Walker, and T.-Q. Nguyen, “Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy,” Adv. Funct. Mater. 20(19), 3314–3321 (2010).
[Crossref]

Wang, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Wei, K.-H.

Y.-W. Su, S.-C. Lan, and K.-H. Wei, “Organic photovoltaics,” Mater. Today 15(12), 554–562 (2012).
[Crossref]

Winiarz, J.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Xue, J.

W. Cao and J. Xue, “Recent progress in organic photovoltaics: device architecture and optical design,” Energy Environ. Sci. 7(7), 2123–2144 (2014).
[Crossref]

Yamamoto, M.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Grating dynamics in a photorefractive polymer with Alq3 electron traps,” Opt. Express 18(9), 9358–9365 (2010).
[Crossref] [PubMed]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Yu, J.

J. Yu, Y. Zheng, and J. Huang, “Towards high performance organic photovoltaic cells: a review of recent development in organic photovoltaics,” Polymers (Basel) 6(9), 2473–2509 (2014).
[Crossref]

Zhai, L.

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

Zheng, Y.

J. Yu, Y. Zheng, and J. Huang, “Towards high performance organic photovoltaic cells: a review of recent development in organic photovoltaics,” Polymers (Basel) 6(9), 2473–2509 (2014).
[Crossref]

Adv. Funct. Mater. (1)

X.-D. Dang, A. B. Tamayo, J. Seo, C. V. Hoven, B. Walker, and T.-Q. Nguyen, “Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy,” Adv. Funct. Mater. 20(19), 3314–3321 (2010).
[Crossref]

Energy Environ. Sci. (1)

W. Cao and J. Xue, “Recent progress in organic photovoltaics: device architecture and optical design,” Energy Environ. Sci. 7(7), 2123–2144 (2014).
[Crossref]

J. Appl. Phys. (1)

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space charge gratings in photoconductive polymers,” J. Appl. Phys. 72(5), 1888–1893 (1992).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

P. Chantharasupawong, C. W. Christenson, R. Philip, L. Zhai, J. Winiarz, M. Yamamoto, L. Tetard, R. R. Nair, and J. Thomas, “Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(36), 7639–7647 (2014).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, “Photorefractive performance of poly(triarylamine)-based polymer composites: An approach from the photoconductive properties,” J. Polym. Sci., B, Polym. Phys. 53(7), 502–508 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Tsutsui and N. Takada, “Progress in emission efficiency of organic light-emitting diodes: basic understanding and its technical application,” Jpn. J. Appl. Phys. 52(11R), 110001 (2013).
[Crossref]

Mater. Today (1)

Y.-W. Su, S.-C. Lan, and K.-H. Wei, “Organic photovoltaics,” Mater. Today 15(12), 554–562 (2012).
[Crossref]

Nature (1)

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Org. Electron. (1)

K. Kinashi, H. Shinkai, W. Sakai, and N. Tsutsumi, “Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes,” Org. Electron. 14(11), 2987–2993 (2013).
[Crossref]

Org. Lett. (1)

Y. Shiraishi, K. Adachi, M. Itoh, and T. Hirai, “Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor,” Org. Lett. 11(15), 3482–3485 (2009).
[Crossref] [PubMed]

Phys. Rev. (1)

L. Kulikovsky, D. Neher, E. Mecher, K. Meerholz, H.-H. Horhold, and O. Ostroverkhova, “Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite,” Phys. Rev. 69(12), 125216 (2004).
[Crossref]

Phys. Rev. B (1)

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61(20), 13515–13527 (2000).
[Crossref]

Phys. Status Solidi A (1)

W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi A 210(1), 44–65 (2013).
[Crossref]

Polymers (Basel) (1)

J. Yu, Y. Zheng, and J. Huang, “Towards high performance organic photovoltaic cells: a review of recent development in organic photovoltaics,” Polymers (Basel) 6(9), 2473–2509 (2014).
[Crossref]

Proc. SPIE (1)

T. K. Däubler, L. Kulikovsky, D. Neher, V. Cimrová, J. C. Hummelen, E. Mecher, R. Bittner, and K. Meerholz, “Photoconductivity and charge-carrier photogeneration in photorefractive polymers,” Proc. SPIE 4462, 206–216 (2002).
[Crossref]

Rev. Mod. Phys. (1)

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Structural formulae of PTAA, PDCST, TAA, PCBM, and Alq3.

Fig. 2
Fig. 2

Plot of the diffraction efficiency as a function of time for a PR device with a composition of PTAA/PDCST/TAA/PCBM/Alq3 (43.5/35/20/0.5/1 wt%) (thickness: 64 μm) at an applied field of 60 V μm−1. The writing beam of 532 nm light (I = 0.534 W cm−2) was turned on at 0 s.

Fig. 3
Fig. 3

Plots of the photocurrent as a function of the applied field for PTAA PR composites with and without Alq3.

Fig. 4
Fig. 4

Photocurrent as a function of the Alq3 content in a PTAA PR composite. Applied field: 60 V μm−1. Solid curve is a guide for eye.

Fig. 5
Fig. 5

UV-vis spectra of PTAA PR composites with and without Alq3. Dashed curve (difference) is the spectrum due to the charge transfer between PTAA and Alq3.

Fig. 6
Fig. 6

Energy-level diagram of the PTAA PR composite related to the potential energies of the ITO substrate, SAM-ITO electrode, PCBM, PTAA, PDCST, Alq3, and TAA.

Fig. 7
Fig. 7

Left: sequence response of the optical gain for a PTAA PR composite upon applying a rectangular field at a frequency of 100 Hz. Right: one cycle response with a response time of 350 μs and a decay time of 200 μs.

Fig. 8
Fig. 8

Left: sequence response of the photocurrent for a PTAA PR composite when the laser beam was turned on and off at a frequency of 100 Hz under a constant field of 60 V μm−1. Right: one cycle response with a response time of 367 μs and a decay time of 213 μs.

Fig. 9
Fig. 9

Sequence response of the diffraction efficiency for a PR device with the composition PTAA/PDCST/TAA/PCBM/Alq3 (43.5/35/20/0.5/1 wt%) with a chopping frequency of 99 Hz. Applied electric field is 60 V μm−1. Response time: 1.1 ms; decay time: 0.831 ms.

Fig. 10
Fig. 10

Left: sequence response of the diffraction efficiency for a PTAA PR composite under a rectangular applied field at a frequency of 100 Hz. Right: one cycle response. Response time: 0.86 ms; decay time: 0.105 ms.

Tables (1)

Tables Icon

Table 1 Photocurrent (Iph) and related quantities in the PTAA PR composites with and without Alq3. I0 is 0.534 W cm−2 at 532 nm and 0.221 W cm−2 at 632.8 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η % = I d I t + I d × 100
Γ = 1 d [ cos θ A ln I A ( I B 0 ) I A ( I B = 0 ) cos θ B ln I B ( I A 0 ) I B ( I A = 0 ) ] ,
η = η 0 { 1 exp [ ( t τ ) β ] } or Γ = Γ 0 { 1 exp [ ( t τ ) β ] }
η ext = exp ( α d cos θ A ) η ,
S = η ext I τ ,
φ ph ( E ) = J ph h ν e I 0 α L = σ ph E 0 h ν e I 0 α L ,
φ ph ( E ) = G η p = ε r ε 0 E 0 e L T i η p ,
E q = e T i ε r ε 0 K G ,
τ G = T i h ν α η p I 0 ,
1 τ G = σ ph ε r ε 0

Metrics