Abstract

We demonstrate that n-doped resistive heaters in silicon waveguides show photoconductive effects with high responsivities. These photoconductive heaters, integrated into microring resonator (MRR)-based filters, were used to automatically tune and stabilize the filter’s resonance wavelength to the input laser’s wavelength. This is achieved without requiring dedicated defect implantations, additional material depositions, dedicated photodetectors, or optical power tap-outs. Automatic wavelength stabilization of first-order MRR and second-order series-coupled MRR filters is experimentally demonstrated. Open eye diagrams were obtained for data transmission at 12.5 Gb/s while the temperature was varied by 5 °C at a rate of 0.28 °C/s. We theoretically show that series-coupled MRR-based filters of any order can be automatically tuned by using photoconductive heaters to monitor the light intensity in each MRR, and sequentially aligning the resonance of each MRR to the laser’s wavelength.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators

Linjie Zhou, Haike Zhu, Heng Zhang, and Jianping Chen
Opt. Express 22(2) 2141-2149 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33(1), 54–67 (2013).
    [Crossref]
  2. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4), 269–281 (2014).
    [Crossref]
  3. F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: Toward feedback-controlled integrated photonics,” IEEE Photon. J. 6(2), 1–6 (2014).
    [Crossref]
  4. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), p. CThJ3.
  5. J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
    [Crossref] [PubMed]
  6. J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SW1N.2.
  7. Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
    [Crossref]
  8. Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
    [Crossref] [PubMed]
  9. C. V. Poulton, P. Dong, and Y. K. Chen, “Photoresistive microring heater with resonance control loop,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SM2I.3.
  10. S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
    [Crossref]
  11. S. TalebiFard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(16), 28517–28529 (2014).
    [Crossref]
  12. H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
    [Crossref] [PubMed]
  13. D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
    [Crossref]
  14. K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol 32(3), 505–512 (2014).
    [Crossref]
  15. C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
    [Crossref]
  16. E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), p. CM2M.1.
  17. P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
    [Crossref]
  18. X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
    [Crossref] [PubMed]
  19. W. R. McKinnon, D. X. Xu, C. Storey, E. Post, A. Densmore, A. Delge, P. Waldron, J. H. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express 17(21), 18971–18982 (2009).
    [Crossref]
  20. H. Jayatilleka, M. Caverley, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Crosstalk limitations of microring-resonator based WDM demultiplexers on SOI,” in Optical Interconnects Conference (IEEE, 2015), p. TuB5.
  21. H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved P-N junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 56–63 (2014).
    [Crossref]
  22. L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22(2), 2141–2149 (2014).
    [Crossref] [PubMed]
  23. Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
    [Crossref] [PubMed]
  24. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
    [Crossref] [PubMed]
  25. R. Boeck, “Silicon ring resonator add-drop multiplexers,” Master’s thesis, University of British Columbia (2011).
  26. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
    [Crossref] [PubMed]
  27. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15(6), 998–1005 (1997).
    [Crossref]
  28. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference (Optical Society of America, 2014), p. Th2A.37.

2015 (1)

2014 (11)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4), 269–281 (2014).
[Crossref]

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: Toward feedback-controlled integrated photonics,” IEEE Photon. J. 6(2), 1–6 (2014).
[Crossref]

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol 32(3), 505–512 (2014).
[Crossref]

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved P-N junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 56–63 (2014).
[Crossref]

L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22(2), 2141–2149 (2014).
[Crossref] [PubMed]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref] [PubMed]

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref] [PubMed]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

S. TalebiFard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(16), 28517–28529 (2014).
[Crossref]

2013 (3)

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33(1), 54–67 (2013).
[Crossref]

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

2009 (1)

2004 (1)

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15(6), 998–1005 (1997).
[Crossref]

Absil, P.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[Crossref] [PubMed]

Ackert, J.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol 32(3), 505–512 (2014).
[Crossref]

Ackert, J. J.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Alloatti, L.

Amberg, P.

Annoni, A.

Baets, R.

Bai, R.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Beausoleil, R. G.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Bergman, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4), 269–281 (2014).
[Crossref]

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol 32(3), 505–512 (2014).
[Crossref]

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33(1), 54–67 (2013).
[Crossref]

Biberman, A.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), p. CM2M.1.

Boeck, R.

R. Boeck, “Silicon ring resonator add-drop multiplexers,” Master’s thesis, University of British Columbia (2011).

Bogaerts, W.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[Crossref] [PubMed]

Carminati, M.

Caverley, M.

S. TalebiFard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(16), 28517–28529 (2014).
[Crossref]

H. Jayatilleka, M. Caverley, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Crosstalk limitations of microring-resonator based WDM demultiplexers on SOI,” in Optical Interconnects Conference (IEEE, 2015), p. TuB5.

Chang, E.

Chen, C. H.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Chen, J.

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved P-N junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 56–63 (2014).
[Crossref]

L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22(2), 2141–2149 (2014).
[Crossref] [PubMed]

Chen, Y. K.

C. V. Poulton, P. Dong, and Y. K. Chen, “Photoresistive microring heater with resonance control loop,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SM2I.3.

Chiang, P.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Chrostowski, L.

S. TalebiFard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(16), 28517–28529 (2014).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference (Optical Society of America, 2014), p. Th2A.37.

H. Jayatilleka, M. Caverley, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Crosstalk limitations of microring-resonator based WDM demultiplexers on SOI,” in Optical Interconnects Conference (IEEE, 2015), p. TuB5.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15(6), 998–1005 (1997).
[Crossref]

Ciccarella, P.

Cox, J. A.

Cunningham, J. E.

Dahlem, M. S.

De Coster, J.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

De Heyn, P.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

De LaRue, R. M.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Delge, A.

Densmore, A.

DeRose, C. T.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), p. CThJ3.

Djordjevic, S. S.

Dong, P.

C. V. Poulton, P. Dong, and Y. K. Chen, “Photoresistive microring heater with resonance control loop,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SM2I.3.

Donzella, V.

Feng, S.

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
[Crossref] [PubMed]

Ferrari, G.

Fiorentino, M.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Flueckiger, J.

S. TalebiFard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(16), 28517–28529 (2014).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference (Optical Society of America, 2014), p. Th2A.37.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15(6), 998–1005 (1997).
[Crossref]

Grillanda, S.

Grist, S. M.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15(6), 998–1005 (1997).
[Crossref]

Hillerkuss, D.

Ho, R.

Holzwarth, C. W.

Huang, Y.

Huante-Ceron, E.

Ippen, E. P.

Jaeger, N. A. F.

S. TalebiFard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(16), 28517–28529 (2014).
[Crossref]

H. Jayatilleka, M. Caverley, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Crosstalk limitations of microring-resonator based WDM demultiplexers on SOI,” in Optical Interconnects Conference (IEEE, 2015), p. TuB5.

Janz, S.

Jayatilleka, H.

H. Jayatilleka, M. Caverley, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Crosstalk limitations of microring-resonator based WDM demultiplexers on SOI,” in Optical Interconnects Conference (IEEE, 2015), p. TuB5.

Jessop, P. E.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Kärtner, F. X.

Khilo, A.

Knights, A.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol 32(3), 505–512 (2014).
[Crossref]

Knights, A. P.

S. TalebiFard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(16), 28517–28529 (2014).
[Crossref]

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Komorowska, K.

Korn, D.

Krishnamoorthy, A. V.

Kwok, E.

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15(6), 998–1005 (1997).
[Crossref]

Lee, J. H.

Lentine, A. L.

Lepage, G.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[Crossref] [PubMed]

Leuthold, J.

Lexau, J.

Li, C.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Li, X.

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved P-N junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 56–63 (2014).
[Crossref]

Li, Y.

Lin, S.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15(6), 998–1005 (1997).
[Crossref]

Liu, F.

Logan, D.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol 32(3), 505–512 (2014).
[Crossref]

Logan, D. F.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Luck, D. L.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), p. CThJ3.

Luo, Y.

Ma, C.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Mak, J. C. C.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SW1N.2.

McKinnon, W. R.

Melloni, A.

Mikkelsen, J. C.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SW1N.2.

Mineo, C.

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33(1), 54–67 (2013).
[Crossref]

Mookherjea, S.

Moresco, M.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), p. CM2M.1.

Morichetti, F.

Mountain, D.

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33(1), 54–67 (2013).
[Crossref]

Murray, K.

Murray, K. J.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Nielson, G. N.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), p. CThJ3.

Ophir, N.

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33(1), 54–67 (2013).
[Crossref]

Padmaraju, K.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol 32(3), 505–512 (2014).
[Crossref]

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4), 269–281 (2014).
[Crossref]

Palermo, S.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Paloczi, G.

Pantouvaki, M.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[Crossref] [PubMed]

Peng, Z.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Poon, A.

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

Poon, A. W.

Poon, J.

Poon, J. K. S.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SW1N.2.

Post, E.

Poulton, C. V.

C. V. Poulton, P. Dong, and Y. K. Chen, “Photoresistive microring heater with resonance control loop,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SM2I.3.

Raj, K.

Sacher, W. D.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SW1N.2.

Sampietro, M.

Scheuer, J.

Schmid, J. H.

Schmidt, S. A.

Shafik, A.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Shekhar, S.

H. Jayatilleka, M. Caverley, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Crosstalk limitations of microring-resonator based WDM demultiplexers on SOI,” in Optical Interconnects Conference (IEEE, 2015), p. TuB5.

Shiraishi, T.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol 32(3), 505–512 (2014).
[Crossref]

Shubin, I.

Smith, H. I.

Sorel, M.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Starbuck, A. L.

Stojanovic, V.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), p. CM2M.1.

Storey, C.

Strain, M.

Sun, C.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), p. CM2M.1.

Sun, X.

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved P-N junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 56–63 (2014).
[Crossref]

Tabasy, E. Z.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Talebi Fard, S.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference (Optical Society of America, 2014), p. Th2A.37.

TalebiFard, S.

Tang, G.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Thacker, H.

Timurdogan, E.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), p. CM2M.1.

Trotter, D. C.

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref] [PubMed]

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), p. CM2M.1.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), p. CThJ3.

Van Campenhout, J.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[Crossref] [PubMed]

Van Thourhout, D.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

Velha, P.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Verheyen, P.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[Crossref] [PubMed]

Waldron, P.

Wang, B.

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

Wang, X.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference (Optical Society of America, 2014), p. Th2A.37.

Wang, Y.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference (Optical Society of America, 2014), p. Th2A.37.

Watts, M. R.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), p. CM2M.1.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), p. CThJ3.

Wu, Y.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference (Optical Society of America, 2014), p. Th2A.37.

Xu, D. X.

Xue, T.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SW1N.2.

Yao, J.

Yariv, A.

Yong, Z.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SW1N.2.

Young, R. W.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), p. CThJ3.

Yu, H.

Zhang, H.

Zhang, Y.

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
[Crossref] [PubMed]

Zheng, X.

Zhou, L.

L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22(2), 2141–2149 (2014).
[Crossref] [PubMed]

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved P-N junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 56–63 (2014).
[Crossref]

Zhou, Y.

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved P-N junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 56–63 (2014).
[Crossref]

Zhu, H.

L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22(2), 2141–2149 (2014).
[Crossref] [PubMed]

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved P-N junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 56–63 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved P-N junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 56–63 (2014).
[Crossref]

IEEE J. Solid-State Circuits (1)

C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS,” IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014).
[Crossref]

IEEE Micro (1)

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33(1), 54–67 (2013).
[Crossref]

IEEE Photon. J. (1)

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: Toward feedback-controlled integrated photonics,” IEEE Photon. J. 6(2), 1–6 (2014).
[Crossref]

J. Lightw. Technol (1)

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol 32(3), 505–512 (2014).
[Crossref]

J. Lightw. Technol. (2)

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightw. Technol. 31(16), 2785–2792 (2013).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15(6), 998–1005 (1997).
[Crossref]

J. Opt. (1)

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De LaRue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4), 269–281 (2014).
[Crossref]

Opt. Express (8)

J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
[Crossref] [PubMed]

W. R. McKinnon, D. X. Xu, C. Storey, E. Post, A. Densmore, A. Delge, P. Waldron, J. H. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express 17(21), 18971–18982 (2009).
[Crossref]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22(2), 2141–2149 (2014).
[Crossref] [PubMed]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref] [PubMed]

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref] [PubMed]

S. TalebiFard, K. Murray, M. Caverley, V. Donzella, J. Flueckiger, S. M. Grist, E. Huante-Ceron, S. A. Schmidt, E. Kwok, N. A. F. Jaeger, A. P. Knights, and L. Chrostowski, “Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors,” Opt. Express 22(16), 28517–28529 (2014).
[Crossref]

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (1)

Other (7)

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), p. CThJ3.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SW1N.2.

C. V. Poulton, P. Dong, and Y. K. Chen, “Photoresistive microring heater with resonance control loop,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2015), p. SM2I.3.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference (Optical Society of America, 2014), p. Th2A.37.

R. Boeck, “Silicon ring resonator add-drop multiplexers,” Master’s thesis, University of British Columbia (2011).

H. Jayatilleka, M. Caverley, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Crosstalk limitations of microring-resonator based WDM demultiplexers on SOI,” in Optical Interconnects Conference (IEEE, 2015), p. TuB5.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), p. CM2M.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic cross-section of the waveguide used in the IRPH. (b) Microscope image of an add/drop MRR filter overlaid with a circuit description of the integrated IRPH.

Fig. 2
Fig. 2

(a) Measured Iheater as a function of Vheater. (b) Normalized drop-port transmission and IPD as a function of the wavelength offset relative to 1551.52 nm. Vheater = 1 V and the drop-port transmission is normalized to 87 µW, which was the estimated optical power in the bus waveguide at the input of the MRR filter.

Fig. 3
Fig. 3

Responsivity of the IRPH, measured at the resonance wavelength of the MRR, (a) as a function of Popt-in, with Vheater = 1V, and (b) as a function of Vheater, with Popt-in = 348µW.

Fig. 4:
Fig. 4:

(a) Schematic of the experimental setup. (b) Flow diagram of the control algorithm.

Fig. 5
Fig. 5

Measured (a) IPD and Vheater, and (b) normalized drop-port transmission, during the progression of the control algorithm. (c) Normalized through- and drop-port transmission spectra of the MRR filter before and after the control algorithm was applied.

Fig. 6
Fig. 6

(a) Measured eye diagram with a constant stage temperature. (b) Measured stage temperature as a function of time. Measured eye diagrams (c) with and (d) without automated wavelength stabilization.

Fig. 7
Fig. 7

(a) Picture of a fabricated second-order series-coupled MRR filter. (b) Equivalent circuit diagram of the device.

Fig. 8
Fig. 8

Measured (a) IPD1 as a function of Vheater1, with Vheater2 = 0V, and (b) IPD1 and IPD2 as functions of Vheater2, with Vheater1 = 1.15 V. (c) Measured through- and drop-port responses of the second-order series-coupled MRR filter before and after tuning.

Fig. 9
Fig. 9

(a) Calculated normalized cavity intensity in MRR 2 as function of ϕdiff and ϕavg. (b) Through- and drop-port transmission spectra before and after applying the control algorithm to the initially tuned spectrum in Fig. 8(c). Wavelength is relative to 1554 nm.

Fig. 10
Fig. 10

Flow diagram illustrating the the control algorithm used to stabilize the second-order series-coupled MRR.

Fig. 11
Fig. 11

(a) Measured eye diagram at constant stage temperature. (b) Measured stage temperature as a function of time. Measured eye diagrams (c) with and (d) without automated wavelength stabilization.

Fig. 12
Fig. 12

(a) Schematic of a series-coupled 6th-order MRR filter. (b) Simulated through- and drop-port transmission spectra before and after tuning. (c)-(h) Calculated optical cavity intensity in MRRs 1–6 as a function of ϕ1–6 as the MRRs are sequentially tuned to λ c . The optical transmission in (b) and the cavity intensities in (c)-(h) are all normalized to the optical intensity at the input of the filter.

Metrics