Abstract

A THz near-field transmission imaging system was successfully demonstrated to image the vessels inside the ears of nude mice in vivo. Wave-guided illumination and near-field scanning detection with a sub-wavelength aperture were applied. An operating frequency of 340 GHz was chosen to achieve a higher penetration depth in tissues with a reasonable signal-to-noise ratio. The near-field pattern of the power transmittance through the vessel was also numerically simulated and showed good correspondence to the measured results. The capability of the system for long-term monitoring in vivo was also demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. P. Cherkasova, M. M. Nazarov, I. N. Smirnova, A. A. Angeluts, and A. P. Shkurinov, “Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes,” Phys. Wave Phenom. 22(3), 185–188 (2014).
    [Crossref]
  2. K. Jeong, Y.-M. Huh, S.-H. Kim, Y. Park, J.-H. Son, S. J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013).
    [Crossref] [PubMed]
  3. C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz time-domain spectroscopy of human blood,” IEEE J. Biomed. Health Inform. 17(4), 774–778 (2013).
    [Crossref] [PubMed]
  4. T.-F. Tseng, B. You, H.-C. Gao, T.-D. Wang, and C.-K. Sun, “A pilot clinical study to investigate the human blood spectrum characteristics in sub-THz region,” Opt. Express 23(7), 9440–9451 (2015).
    [Crossref] [PubMed]
  5. C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W. J. Lee, H.-Y. Huang, and C.-K. Sun, “All-terahertz fiber-scanning near-field microscopy,” Opt. Lett. 34(7), 1084–1086 (2009).
    [Crossref] [PubMed]
  6. H. Chen, W.-J. Lee, H.-Y. Huang, C.-M. Chiu, Y.-F. Tsai, T.-F. Tseng, J.-T. Lu, W.-L. Lai, and C.-K. Sun, “Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors,” Opt. Express 19(20), 19523–19531 (2011).
    [Crossref] [PubMed]
  7. H. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y.-Y. Huang, E. Y. Chuang, Y. J. Hwang, and C. K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19(22), 21552–21562 (2011).
    [Crossref] [PubMed]
  8. Y. Sun, M. Y. Sy, Y.-X. Wang, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-Macpherson, “A promising diagnostic method: Terahertz pulsed imaging and spectroscopy,” World J. Radiol. 3(3), 55–65 (2011).
    [Crossref] [PubMed]
  9. E. Jung, H.-J. Choi, M. Lim, H. Kang, H. Park, H. Han, B.-H. Min, S. Kim, I. Park, and H. Lim, “Quantitative analysis of water distribution in human articular cartilage using terahertz time-domain spectroscopy,” Biomed. Opt. Express 3(5), 1110–1115 (2012).
    [Crossref] [PubMed]
  10. P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
    [Crossref] [PubMed]
  11. A. J. L. Adam, “Review of near-field terahertz measurement methods and their applications: How to achieve sub-wavelength resolution at THz frequencies,” J. Infrared Millim. Terahertz Waves 32(8), 976–1019 (2011).
    [Crossref]
  12. N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002).
    [Crossref]
  13. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
    [Crossref]
  14. N. Zimov’ev, A. Amdrianov, A. Gallant, J. Chamberlain, and V. Trukhim, “Contrast and resolution enhancement in a confocal terahertz video system,” JETP Lett. 88(8), 492–495 (2008).
    [Crossref]
  15. R. Lecaque, S. Grésillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. W. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
    [Crossref]
  16. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15(19), 11781–11789 (2007).
    [Crossref] [PubMed]
  17. R. Chakkittakandy, J. A. Corver, and P. C. M. Planken, “Quasi-near field terahertz generation and detection,” Opt. Express 16(17), 12794–12805 (2008).
    [Crossref] [PubMed]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method (Artech House 3rd ed., 2000).
  19. H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300 GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
    [Crossref]
  20. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [Crossref] [PubMed]
  21. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref] [PubMed]
  22. J. C. Lin, “A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation,” IEEE Antennas Propag. Mag. 48(1), 157–159 (2006).
    [Crossref]
  23. N. N. Rao, “Several topics for electronics and photonics” in Elements of Engineering Electromagnetics (Pearson Prentice Hall 6th ed., 2004)
  24. J. W. Goodman, “Frequency analysis of optical imaging systems” in Introduction to Fourier Optics (Roberts and Company 3rd ed., 2005)
  25. C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous-wave terahertz reflection imaging of ex-vivo nonmelanoma skin cancer,” Proc. SPIE 8261, 82610X (2012).
    [Crossref]
  26. S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
    [Crossref] [PubMed]
  27. V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).
    [Crossref] [PubMed]
  28. P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
    [Crossref] [PubMed]
  29. P. So, H. Kim, and I. Kochevar, “Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,” Opt. Express 3(9), 339–350 (1998).
    [Crossref] [PubMed]
  30. C. K. Sun, C. H. Yu, S. P. Tai, C. T. Kung, I. J. Wang, H. C. Yu, H. J. Huang, W. J. Lee, and Y. F. Chan, “In vivo and ex vivo imaging of intra-tissue elastic fibers using third-harmonic-generation microscopy,” Opt. Express 15(18), 11167–11177 (2007).
    [Crossref] [PubMed]
  31. R.-S. Wu, S.-J. Fan, Y. Mei, Y.-C. Zhong, L.-M. Qiu, and Y. Li, “The effect of blood sugar level after insulin skin-poping in mice,” Prog. Mod. Biomed. 12, 852–855 (2012).

2015 (1)

2014 (1)

O. P. Cherkasova, M. M. Nazarov, I. N. Smirnova, A. A. Angeluts, and A. P. Shkurinov, “Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes,” Phys. Wave Phenom. 22(3), 185–188 (2014).
[Crossref]

2013 (2)

K. Jeong, Y.-M. Huh, S.-H. Kim, Y. Park, J.-H. Son, S. J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013).
[Crossref] [PubMed]

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz time-domain spectroscopy of human blood,” IEEE J. Biomed. Health Inform. 17(4), 774–778 (2013).
[Crossref] [PubMed]

2012 (4)

E. Jung, H.-J. Choi, M. Lim, H. Kang, H. Park, H. Han, B.-H. Min, S. Kim, I. Park, and H. Lim, “Quantitative analysis of water distribution in human articular cartilage using terahertz time-domain spectroscopy,” Biomed. Opt. Express 3(5), 1110–1115 (2012).
[Crossref] [PubMed]

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous-wave terahertz reflection imaging of ex-vivo nonmelanoma skin cancer,” Proc. SPIE 8261, 82610X (2012).
[Crossref]

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

R.-S. Wu, S.-J. Fan, Y. Mei, Y.-C. Zhong, L.-M. Qiu, and Y. Li, “The effect of blood sugar level after insulin skin-poping in mice,” Prog. Mod. Biomed. 12, 852–855 (2012).

2011 (5)

2010 (1)

2009 (3)

2008 (2)

N. Zimov’ev, A. Amdrianov, A. Gallant, J. Chamberlain, and V. Trukhim, “Contrast and resolution enhancement in a confocal terahertz video system,” JETP Lett. 88(8), 492–495 (2008).
[Crossref]

R. Chakkittakandy, J. A. Corver, and P. C. M. Planken, “Quasi-near field terahertz generation and detection,” Opt. Express 16(17), 12794–12805 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

J. C. Lin, “A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation,” IEEE Antennas Propag. Mag. 48(1), 157–159 (2006).
[Crossref]

R. Lecaque, S. Grésillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. W. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[Crossref]

2004 (1)

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).
[Crossref] [PubMed]

2003 (1)

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[Crossref]

2002 (1)

N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002).
[Crossref]

2000 (1)

H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300 GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
[Crossref]

1998 (1)

Adam, A. J. L.

Ahuja, A. T.

Y. Sun, M. Y. Sy, Y.-X. Wang, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-Macpherson, “A promising diagnostic method: Terahertz pulsed imaging and spectroscopy,” World J. Radiol. 3(3), 55–65 (2011).
[Crossref] [PubMed]

Amdrianov, A.

N. Zimov’ev, A. Amdrianov, A. Gallant, J. Chamberlain, and V. Trukhim, “Contrast and resolution enhancement in a confocal terahertz video system,” JETP Lett. 88(8), 492–495 (2008).
[Crossref]

Angeluts, A. A.

O. P. Cherkasova, M. M. Nazarov, I. N. Smirnova, A. A. Angeluts, and A. P. Shkurinov, “Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes,” Phys. Wave Phenom. 22(3), 185–188 (2014).
[Crossref]

Arnone, D. D.

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).
[Crossref] [PubMed]

Ashworth, P. C.

Bajwa, N.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

Barbey, N.

R. Lecaque, S. Grésillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. W. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[Crossref]

Barnett, K. S.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

Bennett, D. B.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

Boccara, C. W.

R. Lecaque, S. Grésillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. W. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[Crossref]

Chakkittakandy, R.

Chamberlain, J.

N. Zimov’ev, A. Amdrianov, A. Gallant, J. Chamberlain, and V. Trukhim, “Contrast and resolution enhancement in a confocal terahertz video system,” JETP Lett. 88(8), 492–495 (2008).
[Crossref]

Chan, Y. F.

Chang, H.-C.

Chen, H.

Chen, H. T.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[Crossref]

Chen, H.-W.

Chen, T.-H.

Cherkasova, O. P.

O. P. Cherkasova, M. M. Nazarov, I. N. Smirnova, A. A. Angeluts, and A. P. Shkurinov, “Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes,” Phys. Wave Phenom. 22(3), 185–188 (2014).
[Crossref]

Chiu, C.-M.

Cho, G. C.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[Crossref]

Choi, H.-J.

Choi, J.

Chuang, E. Y.

Cluff, J.

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).
[Crossref] [PubMed]

Corver, J. A.

Culjat, M. O.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

Eisele, H.

H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300 GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
[Crossref]

Fan, S.-J.

R.-S. Wu, S.-J. Fan, Y. Mei, Y.-C. Zhong, L.-M. Qiu, and Y. Li, “The effect of blood sugar level after insulin skin-poping in mice,” Prog. Mod. Biomed. 12, 852–855 (2012).

Fitzgerald, A. J.

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).
[Crossref] [PubMed]

Flanagan, N.

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).
[Crossref] [PubMed]

Fu, S.-C.

Gallant, A.

N. Zimov’ev, A. Amdrianov, A. Gallant, J. Chamberlain, and V. Trukhim, “Contrast and resolution enhancement in a confocal terahertz video system,” JETP Lett. 88(8), 492–495 (2008).
[Crossref]

Gao, H.-C.

Gibson, A. P.

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz time-domain spectroscopy of human blood,” IEEE J. Biomed. Health Inform. 17(4), 774–778 (2013).
[Crossref] [PubMed]

Giles, R. H.

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous-wave terahertz reflection imaging of ex-vivo nonmelanoma skin cancer,” Proc. SPIE 8261, 82610X (2012).
[Crossref]

Goyette, T. M.

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous-wave terahertz reflection imaging of ex-vivo nonmelanoma skin cancer,” Proc. SPIE 8261, 82610X (2012).
[Crossref]

Grésillon, S.

R. Lecaque, S. Grésillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. W. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[Crossref]

Grundfest, W. S.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

Haam, S.

Haddad, G. I.

H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300 GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
[Crossref]

Han, H.

Hsueh, Y.-C.

Huang, H. J.

Huang, H.-Y.

Huang, Y.-J.

Huang, Y.-R.

Huang, Y.-Y.

Huh, Y.-M.

K. Jeong, Y.-M. Huh, S.-H. Kim, Y. Park, J.-H. Son, S. J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013).
[Crossref] [PubMed]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

Hwang, Y. J.

Hwang, Y.-J.

Jeong, K.

K. Jeong, Y.-M. Huh, S.-H. Kim, Y. Park, J.-H. Son, S. J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013).
[Crossref] [PubMed]

Jeoung, S. C.

Joseph, C. S.

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous-wave terahertz reflection imaging of ex-vivo nonmelanoma skin cancer,” Proc. SPIE 8261, 82610X (2012).
[Crossref]

Jung, E.

Kang, H.

Kang, J. H.

Kealey, C. P.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

Kersting, R.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[Crossref]

Kim, D. S.

Kim, H.

Kim, S.

Kim, S.-H.

K. Jeong, Y.-M. Huh, S.-H. Kim, Y. Park, J.-H. Son, S. J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013).
[Crossref] [PubMed]

Kochevar, I.

Kung, C. T.

Kuo, C.-C.

Lai, C.-H.

Lai, W.-L.

Lecaque, R.

R. Lecaque, S. Grésillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. W. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[Crossref]

Lee, J. W.

Lee, K.

Lee, W. J.

Lee, W.-J.

Li, Y.

R.-S. Wu, S.-J. Fan, Y. Mei, Y.-C. Zhong, L.-M. Qiu, and Y. Li, “The effect of blood sugar level after insulin skin-poping in mice,” Prog. Mod. Biomed. 12, 852–855 (2012).

Lim, H.

Lim, M.

Lin, J. C.

J. C. Lin, “A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation,” IEEE Antennas Propag. Mag. 48(1), 157–159 (2006).
[Crossref]

Liu, T.-A.

Lu, J.-T.

Lu, J.-Y.

Maeng, I.

Mei, Y.

R.-S. Wu, S.-J. Fan, Y. Mei, Y.-C. Zhong, L.-M. Qiu, and Y. Li, “The effect of blood sugar level after insulin skin-poping in mice,” Prog. Mod. Biomed. 12, 852–855 (2012).

Min, B.-H.

Nazarov, M. M.

O. P. Cherkasova, M. M. Nazarov, I. N. Smirnova, A. A. Angeluts, and A. P. Shkurinov, “Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes,” Phys. Wave Phenom. 22(3), 185–188 (2014).
[Crossref]

Neel, V. A.

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous-wave terahertz reflection imaging of ex-vivo nonmelanoma skin cancer,” Proc. SPIE 8261, 82610X (2012).
[Crossref]

Oh, S. J.

K. Jeong, Y.-M. Huh, S.-H. Kim, Y. Park, J.-H. Son, S. J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013).
[Crossref] [PubMed]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

Park, H.

Park, I.

Park, J. Y.

Park, Q. H.

Park, Y.

K. Jeong, Y.-M. Huh, S.-H. Kim, Y. Park, J.-H. Son, S. J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013).
[Crossref] [PubMed]

Peng, J.-L.

Pepper, M.

Peretti, R.

R. Lecaque, S. Grésillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. W. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[Crossref]

Pickwell-Macpherson, E.

Y. Sun, M. Y. Sy, Y.-X. Wang, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-Macpherson, “A promising diagnostic method: Terahertz pulsed imaging and spectroscopy,” World J. Radiol. 3(3), 55–65 (2011).
[Crossref] [PubMed]

P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
[Crossref] [PubMed]

Pinder, S. E.

Planken, P. C. M.

Provenzano, E.

Purushotham, A. D.

Pye, R.

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).
[Crossref] [PubMed]

Qiu, L.-M.

R.-S. Wu, S.-J. Fan, Y. Mei, Y.-C. Zhong, L.-M. Qiu, and Y. Li, “The effect of blood sugar level after insulin skin-poping in mice,” Prog. Mod. Biomed. 12, 852–855 (2012).

Reese, G.

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz time-domain spectroscopy of human blood,” IEEE J. Biomed. Health Inform. 17(4), 774–778 (2013).
[Crossref] [PubMed]

Reid, C. B.

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz time-domain spectroscopy of human blood,” IEEE J. Biomed. Health Inform. 17(4), 774–778 (2013).
[Crossref] [PubMed]

Rivoal, J.-C.

R. Lecaque, S. Grésillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. W. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[Crossref]

Rydberg, A.

H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300 GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
[Crossref]

Seo, M. A.

Shankar, S.

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).
[Crossref] [PubMed]

Shkurinov, A. P.

O. P. Cherkasova, M. M. Nazarov, I. N. Smirnova, A. A. Angeluts, and A. P. Shkurinov, “Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes,” Phys. Wave Phenom. 22(3), 185–188 (2014).
[Crossref]

Singh, R. S.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

Smirnova, I. N.

O. P. Cherkasova, M. M. Nazarov, I. N. Smirnova, A. A. Angeluts, and A. P. Shkurinov, “Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes,” Phys. Wave Phenom. 22(3), 185–188 (2014).
[Crossref]

So, P.

Son, J.-H.

K. Jeong, Y.-M. Huh, S.-H. Kim, Y. Park, J.-H. Son, S. J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013).
[Crossref] [PubMed]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

Stojadinovic, A.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

Suh, J.-S.

K. Jeong, Y.-M. Huh, S.-H. Kim, Y. Park, J.-H. Son, S. J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013).
[Crossref] [PubMed]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

Sun, C. K.

Sun, C.-K.

Sun, Y.

Y. Sun, M. Y. Sy, Y.-X. Wang, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-Macpherson, “A promising diagnostic method: Terahertz pulsed imaging and spectroscopy,” World J. Radiol. 3(3), 55–65 (2011).
[Crossref] [PubMed]

Sy, M. Y.

Y. Sun, M. Y. Sy, Y.-X. Wang, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-Macpherson, “A promising diagnostic method: Terahertz pulsed imaging and spectroscopy,” World J. Radiol. 3(3), 55–65 (2011).
[Crossref] [PubMed]

Tai, S. P.

Taylor, Z. D.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

Tewari, P.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

Trukhim, V.

N. Zimov’ev, A. Amdrianov, A. Gallant, J. Chamberlain, and V. Trukhim, “Contrast and resolution enhancement in a confocal terahertz video system,” JETP Lett. 88(8), 492–495 (2008).
[Crossref]

Tsai, Y.-F.

Tseng, T.-F.

van der Valk, N. C. J.

N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002).
[Crossref]

Wallace, V. P.

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz time-domain spectroscopy of human blood,” IEEE J. Biomed. Health Inform. 17(4), 774–778 (2013).
[Crossref] [PubMed]

P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
[Crossref] [PubMed]

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).
[Crossref] [PubMed]

Wang, I. J.

Wang, T.-D.

Wang, Y.-X.

Y. Sun, M. Y. Sy, Y.-X. Wang, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-Macpherson, “A promising diagnostic method: Terahertz pulsed imaging and spectroscopy,” World J. Radiol. 3(3), 55–65 (2011).
[Crossref] [PubMed]

Wu, R.-S.

R.-S. Wu, S.-J. Fan, Y. Mei, Y.-C. Zhong, L.-M. Qiu, and Y. Li, “The effect of blood sugar level after insulin skin-poping in mice,” Prog. Mod. Biomed. 12, 852–855 (2012).

Yaroslavsky, A. N.

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous-wave terahertz reflection imaging of ex-vivo nonmelanoma skin cancer,” Proc. SPIE 8261, 82610X (2012).
[Crossref]

You, B.

Yu, C. H.

Yu, H. C.

Zhang, Y.-T.

Y. Sun, M. Y. Sy, Y.-X. Wang, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-Macpherson, “A promising diagnostic method: Terahertz pulsed imaging and spectroscopy,” World J. Radiol. 3(3), 55–65 (2011).
[Crossref] [PubMed]

Zhong, Y.-C.

R.-S. Wu, S.-J. Fan, Y. Mei, Y.-C. Zhong, L.-M. Qiu, and Y. Li, “The effect of blood sugar level after insulin skin-poping in mice,” Prog. Mod. Biomed. 12, 852–855 (2012).

Zimov’ev, N.

N. Zimov’ev, A. Amdrianov, A. Gallant, J. Chamberlain, and V. Trukhim, “Contrast and resolution enhancement in a confocal terahertz video system,” JETP Lett. 88(8), 492–495 (2008).
[Crossref]

Appl. Phys. Lett. (2)

N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002).
[Crossref]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[Crossref]

Biomed. Opt. Express (1)

Br. J. Dermatol. (1)

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).
[Crossref] [PubMed]

IEEE Antennas Propag. Mag. (1)

J. C. Lin, “A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation,” IEEE Antennas Propag. Mag. 48(1), 157–159 (2006).
[Crossref]

IEEE J. Biomed. Health Inform. (1)

C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, “Terahertz time-domain spectroscopy of human blood,” IEEE J. Biomed. Health Inform. 17(4), 774–778 (2013).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory Tech. (1)

H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300 GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
[Crossref]

J. Biomed. Opt. (2)

K. Jeong, Y.-M. Huh, S.-H. Kim, Y. Park, J.-H. Son, S. J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013).
[Crossref] [PubMed]

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref] [PubMed]

J. Infrared Millim. Terahertz Waves (1)

A. J. L. Adam, “Review of near-field terahertz measurement methods and their applications: How to achieve sub-wavelength resolution at THz frequencies,” J. Infrared Millim. Terahertz Waves 32(8), 976–1019 (2011).
[Crossref]

JETP Lett. (1)

N. Zimov’ev, A. Amdrianov, A. Gallant, J. Chamberlain, and V. Trukhim, “Contrast and resolution enhancement in a confocal terahertz video system,” JETP Lett. 88(8), 492–495 (2008).
[Crossref]

Opt. Commun. (1)

R. Lecaque, S. Grésillon, N. Barbey, R. Peretti, J.-C. Rivoal, and C. W. Boccara, “THz near-field optical imaging by a local source,” Opt. Commun. 262(1), 125–128 (2006).
[Crossref]

Opt. Express (10)

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15(19), 11781–11789 (2007).
[Crossref] [PubMed]

R. Chakkittakandy, J. A. Corver, and P. C. M. Planken, “Quasi-near field terahertz generation and detection,” Opt. Express 16(17), 12794–12805 (2008).
[Crossref] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref] [PubMed]

T.-F. Tseng, B. You, H.-C. Gao, T.-D. Wang, and C.-K. Sun, “A pilot clinical study to investigate the human blood spectrum characteristics in sub-THz region,” Opt. Express 23(7), 9440–9451 (2015).
[Crossref] [PubMed]

P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
[Crossref] [PubMed]

H. Chen, W.-J. Lee, H.-Y. Huang, C.-M. Chiu, Y.-F. Tsai, T.-F. Tseng, J.-T. Lu, W.-L. Lai, and C.-K. Sun, “Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors,” Opt. Express 19(20), 19523–19531 (2011).
[Crossref] [PubMed]

H. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y.-Y. Huang, E. Y. Chuang, Y. J. Hwang, and C. K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19(22), 21552–21562 (2011).
[Crossref] [PubMed]

P. So, H. Kim, and I. Kochevar, “Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,” Opt. Express 3(9), 339–350 (1998).
[Crossref] [PubMed]

C. K. Sun, C. H. Yu, S. P. Tai, C. T. Kung, I. J. Wang, H. C. Yu, H. J. Huang, W. J. Lee, and Y. F. Chan, “In vivo and ex vivo imaging of intra-tissue elastic fibers using third-harmonic-generation microscopy,” Opt. Express 15(18), 11167–11177 (2007).
[Crossref] [PubMed]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Wave Phenom. (1)

O. P. Cherkasova, M. M. Nazarov, I. N. Smirnova, A. A. Angeluts, and A. P. Shkurinov, “Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes,” Phys. Wave Phenom. 22(3), 185–188 (2014).
[Crossref]

Proc. SPIE (1)

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous-wave terahertz reflection imaging of ex-vivo nonmelanoma skin cancer,” Proc. SPIE 8261, 82610X (2012).
[Crossref]

Prog. Mod. Biomed. (1)

R.-S. Wu, S.-J. Fan, Y. Mei, Y.-C. Zhong, L.-M. Qiu, and Y. Li, “The effect of blood sugar level after insulin skin-poping in mice,” Prog. Mod. Biomed. 12, 852–855 (2012).

World J. Radiol. (1)

Y. Sun, M. Y. Sy, Y.-X. Wang, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-Macpherson, “A promising diagnostic method: Terahertz pulsed imaging and spectroscopy,” World J. Radiol. 3(3), 55–65 (2011).
[Crossref] [PubMed]

Other (3)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method (Artech House 3rd ed., 2000).

N. N. Rao, “Several topics for electronics and photonics” in Elements of Engineering Electromagnetics (Pearson Prentice Hall 6th ed., 2004)

J. W. Goodman, “Frequency analysis of optical imaging systems” in Introduction to Fourier Optics (Roberts and Company 3rd ed., 2005)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Configuration of the in vivo THz near-field transmission imaging system.

Fig. 2
Fig. 2

(a) The measured HE11 mode power pattern by the metallic WR-2.8 rectangular waveguide with a detection distance d of ~0.5 mm from the pipe-waveguide end. (b) Cross-section through the central part of the pattern shown in (a). The red dashed line is a Gaussian curve having a 3.5-mm beam waist.

Fig. 3
Fig. 3

Schematic diagram showing the distance relation between the detector metallic waveguide and the skin surface.

Fig. 4
Fig. 4

(a) Photograph of the ear of a nude mouse taken by the USB camera. The blue line indicates the interval (distance) between two neighboring vessels. (b) Photomicrograph taken by a Leica DM500 visible- light microscope. The blue line indicates the average diameter of the vessel.

Fig. 5
Fig. 5

(a) Schematic diagram of the two polarization directions of the transmitting field with profile scanning by (a) the longer side and (b) the shorter side of the waveguide. The arrows show the polarization direction of the electric field. The red pipe represents the blood vessel.

Fig. 6
Fig. 6

Two examples of the in vivo transmission near-field images of mouse ears. (a) and (e): Optical images taken by the USB camera. (b) and (f): Original THz near-field images showing measured transmittance. (c) and (g): Normalized transmission images with the measured transmittance normalized to the transmittance peak located between two vessel transmission dips. (d) and (h): Normalized transmission cross-section through the locations marked with arrows in (c) and (g). The scale of the distance in the optical images (a), (d), and the transmittance scale bar of the THz images (b), (c), (e), and (f) are all provided.

Fig. 7
Fig. 7

Schematic illustration of the vessel distributions, extension directions, and polarization direction of the THz wave set in the numerical simulation.

Fig. 8
Fig. 8

Comparison between the measured and simulated cross-sections normalized to the tissue transmittance. The red curves are the normalized transmittance from the images shown in Fig. 6(c) and 6(g). The black curves are the FDTD simulated normalized transmittance cross-sections with ntissue, nblood, αtissue, and αblood equal to 2.4, 2.4, 40 cm−1, and 120 cm−1, respectively. The vessel diameter and the vessel interval (distance from vessel center to vessel center) adopted were based on the measured values in the optical images shown in Fig. 6(a) and 6(e). (a): The same case as in Fig. 6(c). (b): The same case as in Fig. 6(g).

Fig. 9
Fig. 9

Comparison between the respectively measured and simulated cross-sections normalized to the tissue transmittance. Pink curve: ntissue, nblood, αtissue, αblood equal to 2.2, 2.5, 20 cm−1, 135 cm−1; red curve: ntissue, nblood, αtissue, αblood equal to 2.2, 2.4, 20 cm−1, 120 cm−1 ; green curve: ntissue, nblood, αtissue, αblood equal to 2.3, 2.4, 30 cm−1, 120 cm−1 ; blue curve: ntissue, nblood, αtissue, αblood equal to 2.4, 2.4, 40 cm−1, 120 cm−1, respectively.

Fig. 10
Fig. 10

Comparison between simulated cross-sections normalized to the tissue transmittance with different absorption coefficients of blood. (a) nblood, ntissue, and αtissue equal to 2.5, 2.2, and 20cm−1. (b) nblood, ntissue, and αtissue equal to 2.4, 2.4, and 40cm−1, respectively.

Fig. 11
Fig. 11

Normalized transmittance with different relative angles between the polarization of THz radiation and the extension direction of the vessel. Red line: relative angles equivalent to 0 degree; black line: relative angles equivalent to 90 degrees.

Fig. 12
Fig. 12

Micro-tube for testing of system stability. (a) Image of the micro-tube taken by the USB camera. (b) THz image showing measured transmittance. (c) THz transmittance image obtained 30 minutes after (b). (d) Cross-section through the location marked by the arrows in (b) (black curve) and (c) (red curve). The scale of the distance in the optical images (a)-(c), and the transmittance scale bar of the THz images in (b) and (c) are both provided.

Fig. 13
Fig. 13

Two examples of mouse ear images. (a)-(c): Ear photograph and normalized THz transmittance images of the mouse with insulin injection. (d)-(f): Ear photograph and normalized THz transmittance images of the mouse without insulin injection. The image acquisition interval between (b) and (c) and the interval between (e) and (f) were both 30 minutes.

Fig. 14
Fig. 14

(a) Cross-section through the locations marked by the arrows in Fig. 13(b) (black curve) and 13(c) (red curve). (b) Cross-section through the locations marked by the arrows in Fig. 13(e) (black curve) and 13(f) (red curve).

Metrics