Abstract

We report on the fabrication and electro-optical characterization of SiGeSn multi-quantum well PIN diodes. Two types of PIN diodes, in which two and four quantum wells with well and barrier thicknesses of 10 nm each are sandwiched between B- and Sb-doped Ge-regions, were fabricated as single-mesa devices, using a low-temperature fabrication process. We discuss measurements of the diode characteristics, optical responsivity and room-temperature electroluminescence and compare with theoretical predictions from band structure calculations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of GeSn based heterostructures: towards optimized group IV MQW LEDs

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca
Opt. Express 24(2) 1358-1367 (2016)

GeSn/Ge multiquantum well photodetectors on Si substrates

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze
Opt. Lett. 39(16) 4711-4714 (2014)

Structural and optical characteristics of Ge1−xSnx/Ge superlattices grown on Ge-buffered Si(001) wafers

Jia-Zhi Chen, H. Li, H. H. Cheng, and Guo-En Chang
Opt. Mater. Express 4(6) 1178-1185 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Jiang, J. D. Gallagher, C. L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, and J. Menéndez, “Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials,” Semicond. Sci. Technol. 29(11), 115028 (2014).
    [Crossref]
  2. A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
    [Crossref]
  3. J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
    [Crossref]
  4. R. Roucka, J. Mathews, C. Weng, R. T. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on Silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
    [Crossref]
  5. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on Silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
    [Crossref]
  6. D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
    [Crossref]
  7. M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
    [Crossref] [PubMed]
  8. V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Tunable optical gap at a fixed lattice constant in group-IV semiconductor alloys,” Phys. Rev. Lett. 102(10), 107403 (2009).
    [Crossref] [PubMed]
  9. R. A. Soref, J. Kouvetakis, and J. Menendez, “Advances in SiGeSn/Ge technology,” Mater. Res. Soc. Symp. Proc., 958, 0958L (2007).
  10. L. Jiang, C. Xu, J. D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, “Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications,” Chem. Mater. 26(8), 2522–2531 (2014).
    [Crossref]
  11. S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
    [Crossref]
  12. T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
    [Crossref]
  13. R. T. Beeler, D. J. Smith, J. Kouvetakis, and J. Menéndez, “GeSiSn photodiodes with 1 eV optical gaps grown on Si(100) and Ge(100) platforms,” IEEE J. Photovoltaics 2(4), 434–440 (2012).
    [Crossref]
  14. P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
    [Crossref]
  15. G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express 18(19), 19957–19965 (2010).
    [Crossref] [PubMed]
  16. R. Soref, “Silicon-based silicon-germanium-tin heterostructure photonics,” Philos. Trans. R. Soc. A 372(2012), 201301 (2014).
    [Crossref] [PubMed]
  17. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, 2009).
  18. N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
    [Crossref]
  19. O. Madelung, ed., Semiconductors: Group IV Elements and III–V Compounds. (Springer, 1982).
  20. V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
    [Crossref]
  21. S. Sant and A. Schenk, “Pseudopotential calculations of strained-GeSn/SiGeSn hetero-structures,” Appl. Phys. Lett. 105(16), 162101 (2014).
    [Crossref]
  22. M. Jaros, “Simple analytic model for heterojunction band offsets,” Phys. Rev. B Condens. Matter 37(12), 7112–7114 (1988).
    [Crossref] [PubMed]
  23. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
    [Crossref] [PubMed]
  24. P. Harrison, Quantum Wells, Wires, and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (John Wiley & Sons, 2005).
  25. L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541 (2001).
    [Crossref]
  26. M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
    [Crossref]

2015 (1)

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

2014 (6)

S. Sant and A. Schenk, “Pseudopotential calculations of strained-GeSn/SiGeSn hetero-structures,” Appl. Phys. Lett. 105(16), 162101 (2014).
[Crossref]

L. Jiang, J. D. Gallagher, C. L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, and J. Menéndez, “Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials,” Semicond. Sci. Technol. 29(11), 115028 (2014).
[Crossref]

L. Jiang, C. Xu, J. D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, “Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications,” Chem. Mater. 26(8), 2522–2531 (2014).
[Crossref]

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

2013 (3)

T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
[Crossref]

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

2012 (2)

R. T. Beeler, D. J. Smith, J. Kouvetakis, and J. Menéndez, “GeSiSn photodiodes with 1 eV optical gaps grown on Si(100) and Ge(100) platforms,” IEEE J. Photovoltaics 2(4), 434–440 (2012).
[Crossref]

P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
[Crossref]

2011 (2)

R. Roucka, J. Mathews, C. Weng, R. T. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on Silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on Silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

2010 (1)

2009 (2)

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Tunable optical gap at a fixed lattice constant in group-IV semiconductor alloys,” Phys. Rev. Lett. 102(10), 107403 (2009).
[Crossref] [PubMed]

2006 (1)

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[Crossref]

2001 (1)

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541 (2001).
[Crossref]

1989 (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

1988 (1)

M. Jaros, “Simple analytic model for heterojunction band offsets,” Phys. Rev. B Condens. Matter 37(12), 7112–7114 (1988).
[Crossref] [PubMed]

Agarwal, A. M.

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541 (2001).
[Crossref]

Aoki, T.

L. Jiang, J. D. Gallagher, C. L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, and J. Menéndez, “Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials,” Semicond. Sci. Technol. 29(11), 115028 (2014).
[Crossref]

L. Jiang, C. Xu, J. D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, “Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications,” Chem. Mater. 26(8), 2522–2531 (2014).
[Crossref]

Araki, K.

T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
[Crossref]

Asano, T.

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

Bechler, S.

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

Beeler, R. T.

R. T. Beeler, D. J. Smith, J. Kouvetakis, and J. Menéndez, “GeSiSn photodiodes with 1 eV optical gaps grown on Si(100) and Ge(100) platforms,” IEEE J. Photovoltaics 2(4), 434–440 (2012).
[Crossref]

R. Roucka, J. Mathews, C. Weng, R. T. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on Silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

Breuer, U.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Buca, D.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Capellini, G.

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

Cheng, B. W.

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Cheng, H. H.

Cook, C. S.

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[Crossref]

Costina, I.

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

D’Costa, V. R.

V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Tunable optical gap at a fixed lattice constant in group-IV semiconductor alloys,” Phys. Rev. Lett. 102(10), 107403 (2009).
[Crossref] [PubMed]

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[Crossref]

Eisenschmidt, C.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Fang, Y.-Y.

V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Tunable optical gap at a fixed lattice constant in group-IV semiconductor alloys,” Phys. Rev. Lett. 102(10), 107403 (2009).
[Crossref] [PubMed]

Favaro, R.

L. Jiang, C. Xu, J. D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, “Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications,” Chem. Mater. 26(8), 2522–2531 (2014).
[Crossref]

Gallagher, J. D.

L. Jiang, C. Xu, J. D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, “Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications,” Chem. Mater. 26(8), 2522–2531 (2014).
[Crossref]

L. Jiang, J. D. Gallagher, C. L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, and J. Menéndez, “Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials,” Semicond. Sci. Technol. 29(11), 115028 (2014).
[Crossref]

Giovane, L. M.

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541 (2001).
[Crossref]

Gollhofer, M.

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

Grützmacher, D.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Harrison, P.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Hartmann, J. M.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Holländer, B.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Ikonic, Z.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
[Crossref]

Izunome, K.

T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
[Crossref]

Jaros, M.

M. Jaros, “Simple analytic model for heterojunction band offsets,” Phys. Rev. B Condens. Matter 37(12), 7112–7114 (1988).
[Crossref] [PubMed]

Jiang, L.

L. Jiang, C. Xu, J. D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, “Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications,” Chem. Mater. 26(8), 2522–2531 (2014).
[Crossref]

L. Jiang, J. D. Gallagher, C. L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, and J. Menéndez, “Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials,” Semicond. Sci. Technol. 29(11), 115028 (2014).
[Crossref]

Kaschel, M.

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on Silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kasper, E.

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on Silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kimerling, L. C.

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541 (2001).
[Crossref]

Kittler, M.

Koerner, R.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

Kostecki, K.

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

Kouvetakis, J.

L. Jiang, J. D. Gallagher, C. L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, and J. Menéndez, “Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials,” Semicond. Sci. Technol. 29(11), 115028 (2014).
[Crossref]

L. Jiang, C. Xu, J. D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, “Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications,” Chem. Mater. 26(8), 2522–2531 (2014).
[Crossref]

R. T. Beeler, D. J. Smith, J. Kouvetakis, and J. Menéndez, “GeSiSn photodiodes with 1 eV optical gaps grown on Si(100) and Ge(100) platforms,” IEEE J. Photovoltaics 2(4), 434–440 (2012).
[Crossref]

R. Roucka, J. Mathews, C. Weng, R. T. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on Silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Tunable optical gap at a fixed lattice constant in group-IV semiconductor alloys,” Phys. Rev. Lett. 102(10), 107403 (2009).
[Crossref] [PubMed]

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[Crossref]

Li, C. B.

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Liu, Z.

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Luan, H.-C.

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541 (2001).
[Crossref]

Mantl, S.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Mathews, J.

L. Jiang, J. D. Gallagher, C. L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, and J. Menéndez, “Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials,” Semicond. Sci. Technol. 29(11), 115028 (2014).
[Crossref]

R. Roucka, J. Mathews, C. Weng, R. T. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on Silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Menéndez, J.

L. Jiang, J. D. Gallagher, C. L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, and J. Menéndez, “Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials,” Semicond. Sci. Technol. 29(11), 115028 (2014).
[Crossref]

L. Jiang, C. Xu, J. D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, “Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications,” Chem. Mater. 26(8), 2522–2531 (2014).
[Crossref]

R. T. Beeler, D. J. Smith, J. Kouvetakis, and J. Menéndez, “GeSiSn photodiodes with 1 eV optical gaps grown on Si(100) and Ge(100) platforms,” IEEE J. Photovoltaics 2(4), 434–440 (2012).
[Crossref]

R. Roucka, J. Mathews, C. Weng, R. T. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on Silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Tunable optical gap at a fixed lattice constant in group-IV semiconductor alloys,” Phys. Rev. Lett. 102(10), 107403 (2009).
[Crossref] [PubMed]

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[Crossref]

Moontragoon, P.

P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
[Crossref]

Mussler, G.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Nakatsuka, O.

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
[Crossref]

Oehme, M.

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on Silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Roucka, R.

R. Roucka, J. Mathews, C. Weng, R. T. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on Silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Sant, S.

S. Sant and A. Schenk, “Pseudopotential calculations of strained-GeSn/SiGeSn hetero-structures,” Appl. Phys. Lett. 105(16), 162101 (2014).
[Crossref]

Schenk, A.

S. Sant and A. Schenk, “Pseudopotential calculations of strained-GeSn/SiGeSn hetero-structures,” Appl. Phys. Lett. 105(16), 162101 (2014).
[Crossref]

Schilling, J.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on Silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schmid, M.

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on Silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schmidt, G.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Schroeder, T.

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

Schulze, J.

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on Silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schwartz, B.

Senaratne, C. L.

L. Jiang, J. D. Gallagher, C. L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, and J. Menéndez, “Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials,” Semicond. Sci. Technol. 29(11), 115028 (2014).
[Crossref]

Smith, D. J.

R. T. Beeler, D. J. Smith, J. Kouvetakis, and J. Menéndez, “GeSiSn photodiodes with 1 eV optical gaps grown on Si(100) and Ge(100) platforms,” IEEE J. Photovoltaics 2(4), 434–440 (2012).
[Crossref]

Soref, R.

R. Soref, “Silicon-based silicon-germanium-tin heterostructure photonics,” Philos. Trans. R. Soc. A 372(2012), 201301 (2014).
[Crossref] [PubMed]

Soref, R. A.

P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
[Crossref]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express 18(19), 19957–19965 (2010).
[Crossref] [PubMed]

Stoica, T.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Su, S. J.

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Sun, G.

Takeuchi, S.

T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
[Crossref]

Takeuchi, W.

T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
[Crossref]

Talalaev, V. G.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Taoka, N.

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
[Crossref]

Terashima, T.

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

Tiedemann, A. T.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Tolle, J.

R. Roucka, J. Mathews, C. Weng, R. T. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on Silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Tunable optical gap at a fixed lattice constant in group-IV semiconductor alloys,” Phys. Rev. Lett. 102(10), 107403 (2009).
[Crossref] [PubMed]

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[Crossref]

Tonkikh, A. A.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

Wang, Q. M.

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Weng, C.

R. Roucka, J. Mathews, C. Weng, R. T. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on Silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on Silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Werner, P.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Widmann, D.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

Wirths, S.

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Xie, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Xu, C.

L. Jiang, C. Xu, J. D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, “Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications,” Chem. Mater. 26(8), 2522–2531 (2014).
[Crossref]

Xue, C. L.

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Yamaha, T.

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
[Crossref]

Ye, K.

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

Yu, S.-Q.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Zaima, S.

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
[Crossref]

Zakharov, N. D.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Zaumseil, P.

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

Zhang, D. L.

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Zhang, G. Z.

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Zhang, X.

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Zollner, S.

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[Crossref]

Appl. Phys. Lett. (8)

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on Silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

D. L. Zhang, C. L. Xue, B. W. Cheng, S. J. Su, Z. Liu, X. Zhang, G. Z. Zhang, C. B. Li, and Q. M. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

N. Taoka, T. Asano, T. Yamaha, T. Terashima, O. Nakatsuka, I. Costina, P. Zaumseil, G. Capellini, S. Zaima, and T. Schroeder, “Non-uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation,” Appl. Phys. Lett. 106(6), 061107 (2015).
[Crossref]

S. Sant and A. Schenk, “Pseudopotential calculations of strained-GeSn/SiGeSn hetero-structures,” Appl. Phys. Lett. 105(16), 162101 (2014).
[Crossref]

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541 (2001).
[Crossref]

M. Oehme, K. Kostecki, M. Schmid, M. Kaschel, M. Gollhofer, K. Ye, D. Widmann, R. Koerner, S. Bechler, E. Kasper, and J. Schulze, “Franz-Keldysh effect in GeSn pin photodetectors,” Appl. Phys. Lett. 104(16), 161115 (2014).
[Crossref]

Chem. Mater. (1)

L. Jiang, C. Xu, J. D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, “Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications,” Chem. Mater. 26(8), 2522–2531 (2014).
[Crossref]

ECS Trans. (1)

T. Yamaha, O. Nakatsuka, S. Takeuchi, W. Takeuchi, N. Taoka, K. Araki, K. Izunome, and S. Zaima, “Growth and characterization of heteroepitaxial layers of GeSiSn ternary alloy,” ECS Trans. 50(9), 907–913 (2013).
[Crossref]

IEEE J. Photovoltaics (1)

R. T. Beeler, D. J. Smith, J. Kouvetakis, and J. Menéndez, “GeSiSn photodiodes with 1 eV optical gaps grown on Si(100) and Ge(100) platforms,” IEEE J. Photovoltaics 2(4), 434–440 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Roucka, J. Mathews, C. Weng, R. T. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on Silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

J. Appl. Phys. (1)

P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (2)

M. Jaros, “Simple analytic model for heterojunction band offsets,” Phys. Rev. B Condens. Matter 37(12), 7112–7114 (1988).
[Crossref] [PubMed]

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Tunable optical gap at a fixed lattice constant in group-IV semiconductor alloys,” Phys. Rev. Lett. 102(10), 107403 (2009).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

L. Jiang, J. D. Gallagher, C. L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, and J. Menéndez, “Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials,” Semicond. Sci. Technol. 29(11), 115028 (2014).
[Crossref]

Solid State Commun. (1)

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[Crossref]

Thin Solid Films (1)

S. Wirths, D. Buca, Z. Ikonic, P. Harrison, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, D. Grützmacher, and S. Mantl, “SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications,” Thin Solid Films 557, 183–187 (2014).
[Crossref]

Other (5)

R. A. Soref, J. Kouvetakis, and J. Menendez, “Advances in SiGeSn/Ge technology,” Mater. Res. Soc. Symp. Proc., 958, 0958L (2007).

O. Madelung, ed., Semiconductors: Group IV Elements and III–V Compounds. (Springer, 1982).

R. Soref, “Silicon-based silicon-germanium-tin heterostructure photonics,” Philos. Trans. R. Soc. A 372(2012), 201301 (2014).
[Crossref] [PubMed]

D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, 2009).

P. Harrison, Quantum Wells, Wires, and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (John Wiley & Sons, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic cross section of the MBE layer stacks. (b) and (c) HAADF-STEM image of the MBE layer stacks of the 2-QW and 4-QW sample, respectively. The image contrast represents the atomic number (Z), where black corresponds to low and white to high Z, respectively. (d) and (e) HR-TEM images of the MBE layer stacks of the 2-QW and 4-QW sample, respectively, corresponding to the areas highlighted in the HAADF-STEM images.
Fig. 2
Fig. 2 (a)-(c) EDS maps of the well and barrier regions of the 2-QW sample with concentrations in at.%. (d) EDS line scan of the well and barrier regions of the 2-QWsample. Light grey bars indicate the data points that were selected to extract the barrier composition, dark gray bars indicate the data points that were selected to extract the well composition.
Fig. 3
Fig. 3 Reciprocal space maps taken along the (224) direction and ω-2θ-scans taken along the (004) direction for (a) the 2-QW sample and (b) the 4-QW sample.
Fig. 4
Fig. 4 Theoretical calculation of the potential profile of the MQW layers for Si0.252Ge0.634Sn0.114 wells and Si0.312Ge0.623Sn0.065 barriers with a substrate lattice constant of 0.5650 nm.
Fig. 5
Fig. 5 (a) Schematic cross section (b) Current density as a function of voltage for a 2-QW (black) and the 4-QW (red) device with device radii of 5 μm. The inset shows the current density-voltage characteristics of the 2-QW devices for devices with different radii. The current scales with device area.
Fig. 6
Fig. 6 (a) Responsivity of a 2-QW device and a 4-QW device at −0.5 V external bias. The responsivity is enhanced for the 4-QW device. The inset shows photocurrents of a 2-QW device under reverse bias and at different wavelengths. (b) Absorption coefficient of the SiGeSn-well regions as a function of incident photon energy and at zero bias. The inset shows the square of the absorption coefficient as a function of photon energy and a linear fit to the data. From the intersection of the fit line with the energy axis we obtain a bandgap energy of ~0.76 eV.
Fig. 7
Fig. 7 Room-temperature electroluminescence measurements of the 2-QW and 4-QW device with diode radii of 80 μm each.

Tables (3)

Tables Icon

Table 1 Composition of barrier and well layers in at%.

Tables Icon

Table 2 MQW lattice constants determined by experiment and predicted based on EDS composition analysis

Tables Icon

Table 3 Bowing parameters of the binary alloys

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

a i = 2 C 12 i C 11 i ( a M Q W , m | | a 0 , i ) + a 0 , i ,
E g , ζ ( S i x G e 1 x y S n y ) = x E g , ζ ( S i ) + ( 1 x y ) E g , ζ ( G e ) + y E g , ζ ( S n ) b g , ζ S i G e x ( 1 x y ) b g , ζ G e S n y ( 1 x y ) b g , ζ S i S n x y .
η int = R o p t ( 1 R ) 1 h c q λ
η n = exp ( α G e d n , G e ) ( 1 exp ( 2 α G e d S n α W d W ( n + 1 ) α B d B ) )
1 η 4 exp ( α G e d n , G e ) 1 η 2 exp ( α G e d n , G e ) = exp ( 2 α W d W )

Metrics