Abstract

We developed a system for acquiring 3D depth-resolved maps by measuring the Time-of-Flight (TOF) of single photons. It is based on a CMOS 32 × 32 array of Single-Photon Avalanche Diodes (SPADs) and 350 ps resolution Time-to-Digital Converters (TDCs) into each pixel, able to provide photon-counting or photon-timing frames every 10 µs. We show how such a system can be used to scan large scenes in just hundreds of milliseconds. Moreover, we show how to exploit TDC unwarping and refolding for improving signal-to-noise ratio and extending the full-scale depth range. Additionally, we merged 2D and 3D information in a single image, for easing object recognition and tracking.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-photon pulsed-light indirect time-of-flight 3D ranging

S. Bellisai, D. Bronzi, F. A. Villa, S. Tisa, A. Tosi, and F. Zappa
Opt. Express 21(4) 5086-5098 (2013)

Solid-state 3D imaging using a 1nJ/100ps laser diode transmitter and a single photon receiver matrix

Sahba Jahromi, Jussi-Pekka Jansson, and Juha Kostamovaara
Opt. Express 24(19) 21619-21632 (2016)

Design and characterization of a 256x64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor

Cristiano Niclass, Kota Ito, Mineki Soga, Hiroyuki Matsubara, Isao Aoyagi, Satoru Kato, and Manabu Kagami
Opt. Express 20(11) 11863-11881 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Wei, S. L. Phung, and A. Bouzerdoum, “Pedestrian sensing using time-of-flight range camera,” in Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2011), pp. 43–48 (2011).
  2. E. Kollorz, J. Penne, J. Hornegger, and A. Barke, “Gesture recognition with a time-of-flight camera,” Int. J. Intel. Syst. Technol. Appl. 5(3), 334–343 (2008).
  3. Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2010), pp. 1173–1180.
    [Crossref]
  4. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
    [Crossref] [PubMed]
  5. X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
    [Crossref] [PubMed]
  6. D. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic Press, 1984).
  7. M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, and D. L. Snyder, “Photon time-of-flight-assisted positron emission tomography,” J. Comput. Assist. Tomogr. 5(2), 227–239 (1981).
    [Crossref] [PubMed]
  8. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [Crossref] [PubMed]
  9. F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
    [Crossref]
  10. F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
    [Crossref]
  11. G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
    [Crossref]
  12. D. Tamborini, B. Markovic, F. Villa, and A. Tosi, “16 channel module based on a monolithic array of single photon detectors and 10 ps time-to-digital converters,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802908 (2014).
    [Crossref]
  13. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x 128 single-photon image sensor with column-level 10-Bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
    [Crossref]
  14. C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.
  15. M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.
  16. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
    [Crossref]
  17. D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
    [Crossref]
  18. A. M. Wallace, G. S. Buller, and A. C. Walker, “3D imaging and ranging by time-correlated single photon counting,” Comput. Contr. Eng. J. 12(4), 157–168 (2001).
    [Crossref]
  19. Hewlett-Packard, inc., “Time interval averaging,” Application Note 162–1 (USA).
  20. F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 103–112 (2007).
    [Crossref]
  21. S. Tisa, F. Zappa, A. Tosi, and S. Cova, “Electronics for single photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 113–122 (2007).
    [Crossref]
  22. F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
    [Crossref]
  23. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref] [PubMed]
  24. M. Wahl, “Time-correlated single photon counting,” PicoQuant GmbH Technical Note (2014).
  25. S. Kurtti and J. Kostamovaara, “Pulse width time walk compensation method for a pulsed time-of-flight laser rangefinder,” in IEEE Instrumentation and Measurement Technology Conference (IEEE, 2009), pp. 1059-1062.
    [Crossref]
  26. D. R. Reilly and G. S. Kanter, “High speed lidar via GHz gated photon detector and locked but unequal optical pulse rates,” Opt. Express 22(13), 15718–15723 (2014).
    [Crossref] [PubMed]
  27. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
    [Crossref] [PubMed]
  28. H. E. Andersen, S. E. Reutebuch, and R. J. McGaughey, “A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods,” Can. J. Rem. Sens. 32(5), 355–366 (2006).
    [Crossref]

2014 (5)

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

D. Tamborini, B. Markovic, F. Villa, and A. Tosi, “16 channel module based on a monolithic array of single photon detectors and 10 ps time-to-digital converters,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802908 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

D. R. Reilly and G. S. Kanter, “High speed lidar via GHz gated photon detector and locked but unequal optical pulse rates,” Opt. Express 22(13), 15718–15723 (2014).
[Crossref] [PubMed]

2012 (2)

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

2009 (1)

2008 (3)

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
[Crossref] [PubMed]

E. Kollorz, J. Penne, J. Hornegger, and A. Barke, “Gesture recognition with a time-of-flight camera,” Int. J. Intel. Syst. Technol. Appl. 5(3), 334–343 (2008).

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x 128 single-photon image sensor with column-level 10-Bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

2007 (2)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 103–112 (2007).
[Crossref]

S. Tisa, F. Zappa, A. Tosi, and S. Cova, “Electronics for single photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 113–122 (2007).
[Crossref]

2006 (1)

H. E. Andersen, S. E. Reutebuch, and R. J. McGaughey, “A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods,” Can. J. Rem. Sens. 32(5), 355–366 (2006).
[Crossref]

2004 (1)

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

2001 (2)

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[Crossref]

A. M. Wallace, G. S. Buller, and A. C. Walker, “3D imaging and ranging by time-correlated single photon counting,” Comput. Contr. Eng. J. 12(4), 157–168 (2001).
[Crossref]

1996 (1)

1981 (1)

M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, and D. L. Snyder, “Photon time-of-flight-assisted positron emission tomography,” J. Comput. Assist. Tomogr. 5(2), 227–239 (1981).
[Crossref] [PubMed]

Aharoni, D.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Andersen, H. E.

H. E. Andersen, S. E. Reutebuch, and R. J. McGaughey, “A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods,” Can. J. Rem. Sens. 32(5), 355–366 (2006).
[Crossref]

Arisaka, K.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Barke, A.

E. Kollorz, J. Penne, J. Hornegger, and A. Barke, “Gesture recognition with a time-of-flight camera,” Int. J. Intel. Syst. Technol. Appl. 5(3), 334–343 (2008).

Becker, W.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Bellisai, S.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

Benndorf, K.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Bergmann, A.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Biskup, C.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Borghetti, F.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

Boso, G.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Brockherde, W.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

Bronzi, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

Buller, G. S.

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
[Crossref] [PubMed]

A. M. Wallace, G. S. Buller, and A. C. Walker, “3D imaging and ranging by time-correlated single photon counting,” Comput. Contr. Eng. J. 12(4), 157–168 (2001).
[Crossref]

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

Chan, D.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2010), pp. 1173–1180.
[Crossref]

Charbon, E.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x 128 single-photon image sensor with column-level 10-Bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

Cheng, A.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Collins, R. J.

Colyer, R. A.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Contini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

Cova, S.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 103–112 (2007).
[Crossref]

S. Tisa, F. Zappa, A. Tosi, and S. Cova, “Electronics for single photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 113–122 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2010), pp. 1173–1180.
[Crossref]

Dalla Mora, A.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

Durini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

Favi, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x 128 single-photon image sensor with column-level 10-Bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Fernández, V.

Ficke, D. C.

M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, and D. L. Snyder, “Photon time-of-flight-assisted positron emission tomography,” J. Comput. Assist. Tomogr. 5(2), 227–239 (1981).
[Crossref] [PubMed]

Fishburn, M. W.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

Gersbach, M.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x 128 single-photon image sensor with column-level 10-Bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

Ghioni, M.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

Grant, L.

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

Guerrieri, F.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Gulinatti, A.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Henderson, R.

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

Henderson, R. K.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

Hink, M. A.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Hiskett, P. A.

Hornegger, J.

E. Kollorz, J. Penne, J. Hornegger, and A. Barke, “Gesture recognition with a time-of-flight camera,” Int. J. Intel. Syst. Technol. Appl. 5(3), 334–343 (2008).

Ingargiola, A.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Intermite, G.

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

Kanter, G. S.

Kluter, T.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x 128 single-photon image sensor with column-level 10-Bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Kollorz, E.

E. Kollorz, J. Penne, J. Hornegger, and A. Barke, “Gesture recognition with a time-of-flight camera,” Int. J. Intel. Syst. Technol. Appl. 5(3), 334–343 (2008).

König, K.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Kostamovaara, J.

S. Kurtti and J. Kostamovaara, “Pulse width time walk compensation method for a pulsed time-of-flight laser rangefinder,” in IEEE Instrumentation and Measurement Technology Conference (IEEE, 2009), pp. 1059-1062.
[Crossref]

Krichel, N. J.

Kurtti, S.

S. Kurtti and J. Kostamovaara, “Pulse width time walk compensation method for a pulsed time-of-flight laser rangefinder,” in IEEE Instrumentation and Measurement Technology Conference (IEEE, 2009), pp. 1059-1062.
[Crossref]

Labonne, E.

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

Lacaita, A.

Lange, R.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[Crossref]

Levi, M.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Li, D.-U.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

Lin, R.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Lussana, R.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

Markham, J.

M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, and D. L. Snyder, “Photon time-of-flight-assisted positron emission tomography,” J. Comput. Assist. Tomogr. 5(2), 227–239 (1981).
[Crossref] [PubMed]

Markovic, B.

D. Tamborini, B. Markovic, F. Villa, and A. Tosi, “16 channel module based on a monolithic array of single photon detectors and 10 ps time-to-digital converters,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802908 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

Maruyama, Y.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

McCarthy, A.

McGaughey, R. J.

H. E. Andersen, S. E. Reutebuch, and R. J. McGaughey, “A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods,” Can. J. Rem. Sens. 32(5), 355–366 (2006).
[Crossref]

Michalet, X.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Millaud, J. E.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Mullani, N. A.

M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, and D. L. Snyder, “Photon time-of-flight-assisted positron emission tomography,” J. Comput. Assist. Tomogr. 5(2), 227–239 (1981).
[Crossref] [PubMed]

Niclass, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x 128 single-photon image sensor with column-level 10-Bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Panzeri, F.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Parry, C. S.

Paschen, U.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

Penne, J.

E. Kollorz, J. Penne, J. Hornegger, and A. Barke, “Gesture recognition with a time-of-flight camera,” Int. J. Intel. Syst. Technol. Appl. 5(3), 334–343 (2008).

Rech, I.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Reilly, D. R.

Ren, X.

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

Reutebuch, S. E.

H. E. Andersen, S. E. Reutebuch, and R. J. McGaughey, “A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods,” Can. J. Rem. Sens. 32(5), 355–366 (2006).
[Crossref]

Richardson, J.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

Samori, C.

Scalia, G.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Scarcella, C.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Schuon, S.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2010), pp. 1173–1180.
[Crossref]

Seitz, P.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[Crossref]

Siegmund, O. H.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Snyder, D. L.

M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, and D. L. Snyder, “Photon time-of-flight-assisted positron emission tomography,” J. Comput. Assist. Tomogr. 5(2), 227–239 (1981).
[Crossref] [PubMed]

Stoppa, D.

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

Taghizadeh, M. R.

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

Tamborini, D.

D. Tamborini, B. Markovic, F. Villa, and A. Tosi, “16 channel module based on a monolithic array of single photon detectors and 10 ps time-to-digital converters,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802908 (2014).
[Crossref]

Ter-Pogossian, M. M.

M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, and D. L. Snyder, “Photon time-of-flight-assisted positron emission tomography,” J. Comput. Assist. Tomogr. 5(2), 227–239 (1981).
[Crossref] [PubMed]

Theobalt, C.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2010), pp. 1173–1180.
[Crossref]

Thrun, S.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2010), pp. 1173–1180.
[Crossref]

Tisa, S.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

S. Tisa, F. Zappa, A. Tosi, and S. Cova, “Electronics for single photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 113–122 (2007).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 103–112 (2007).
[Crossref]

Tosi, A.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
[Crossref]

D. Tamborini, B. Markovic, F. Villa, and A. Tosi, “16 channel module based on a monolithic array of single photon detectors and 10 ps time-to-digital converters,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802908 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 103–112 (2007).
[Crossref]

S. Tisa, F. Zappa, A. Tosi, and S. Cova, “Electronics for single photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 113–122 (2007).
[Crossref]

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

Tremsin, A. S.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Vallerga, J. V.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Veerappan, C.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

Villa, F.

D. Tamborini, B. Markovic, F. Villa, and A. Tosi, “16 channel module based on a monolithic array of single photon detectors and 10 ps time-to-digital converters,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802908 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

Waddie, A. J.

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

Walker, A. C.

A. M. Wallace, G. S. Buller, and A. C. Walker, “3D imaging and ranging by time-correlated single photon counting,” Comput. Contr. Eng. J. 12(4), 157–168 (2001).
[Crossref]

Walker, R.

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

Wallace, A. M.

Warburton, R. E.

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

Weiss, S.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Weyers, S.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

Zappa, F.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 103–112 (2007).
[Crossref]

S. Tisa, F. Zappa, A. Tosi, and S. Cova, “Electronics for single photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 113–122 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

Zou, Y.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

Appl. Opt. (2)

Can. J. Rem. Sens. (1)

H. E. Andersen, S. E. Reutebuch, and R. J. McGaughey, “A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods,” Can. J. Rem. Sens. 32(5), 355–366 (2006).
[Crossref]

Comput. Contr. Eng. J. (1)

A. M. Wallace, G. S. Buller, and A. C. Walker, “3D imaging and ranging by time-correlated single photon counting,” Comput. Contr. Eng. J. 12(4), 157–168 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100,000 frames/s 64x32 single-photon detector array for 2D imaging and 3D ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804310 (2014).
[Crossref]

D. Tamborini, B. Markovic, F. Villa, and A. Tosi, “16 channel module based on a monolithic array of single photon detectors and 10 ps time-to-digital converters,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802908 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).
[Crossref]

IEEE J. Solid-State Circuits (1)

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x 128 single-photon image sensor with column-level 10-Bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Int. J. Intel. Syst. Technol. Appl. (1)

E. Kollorz, J. Penne, J. Hornegger, and A. Barke, “Gesture recognition with a time-of-flight camera,” Int. J. Intel. Syst. Technol. Appl. 5(3), 334–343 (2008).

J. Comput. Assist. Tomogr. (1)

M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, and D. L. Snyder, “Photon time-of-flight-assisted positron emission tomography,” J. Comput. Assist. Tomogr. 5(2), 227–239 (1981).
[Crossref] [PubMed]

J. Mod. Opt. (1)

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Microsc. Res. Tech. (1)

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[Crossref] [PubMed]

Opt. Express (2)

Philos. Trans. R. Soc., B (1)

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc., B 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Photonics J. (1)

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measurements,” Photonics J. 4(3), 795–804 (2012).
[Crossref]

Sens. Actuators A Phys. (2)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 103–112 (2007).
[Crossref]

S. Tisa, F. Zappa, A. Tosi, and S. Cova, “Electronics for single photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 113–122 (2007).
[Crossref]

Other (9)

M. Wahl, “Time-correlated single photon counting,” PicoQuant GmbH Technical Note (2014).

S. Kurtti and J. Kostamovaara, “Pulse width time walk compensation method for a pulsed time-of-flight laser rangefinder,” in IEEE Instrumentation and Measurement Technology Conference (IEEE, 2009), pp. 1059-1062.
[Crossref]

G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” Proc. SPIE9504, (2015), doi:.
[Crossref]

X. Wei, S. L. Phung, and A. Bouzerdoum, “Pedestrian sensing using time-of-flight range camera,” in Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2011), pp. 43–48 (2011).

D. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic Press, 1984).

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2010), pp. 1173–1180.
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in International Solid-State Circuits Conference (ISSCC, 2011), pp. 312–314.

M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. Henderson, F. Borghetti, D. Stoppa, and E. Charbon, “A parallel 32×32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” in Proceedings of the 35th European Solid-State Circuits Conf (IEEE, 2009), pp. 196–199.

Hewlett-Packard, inc., “Time interval averaging,” Application Note 162–1 (USA).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Boards assembly (left) and housing (right) of the SPAD camera. Note the SPAD chip on top, the intermediate interface board with SMA connectors, the FPGA digital processing board underneath with USB, and the power supply board at the bottom. The metallic box is provided with a standard C-Mount connector for lenses.
Fig. 2
Fig. 2 Typical Time-of-Flight 3D ranging setup (left): thanks to the single-photon sensitivity of the SPAD array chip, just some of the many photons emitted from a pulsed laser need to be reflected back by the target and be detected. Each frame consists of 1024 (i.e. 32 × 32) data of either 2D “intensity” (photon-counting) or 3D “ranging” (photon-timing) maps of the objects in the scene. Thanks to post-processing, it is possible to merge 2D and 3D information (right).
Fig. 3
Fig. 3 Time-of-Flight histograms of one of the 1024 pixels, with 40:1 ratio between background and signal photons, computed on 512 frames (left) and 16,384 frames (right) per histogram. With the latter, a sub-centimeter precision is reached through centroid computation, while the former provides a poorer precision, very much limited by shot-noise.
Fig. 4
Fig. 4 For frame durations longer than the TDC FSR (a), the 10 µs readout time limits the laser repetition rate. Such a limitation can be overcome (b) by employing a laser repetition period much shorter than the FSR and then unwarping the histograms or (c) by using a laser repetition period equal to the FSR, thus automatically folding repetitions back into the same histogram. Note that frame duration is always fixed to 10 µs, limited by the readout time, which is performed concurrently with dwell time.
Fig. 5
Fig. 5 High repetition rate pulsed lasers can be profitably employed to reduce the required pulse energy: (left) histogram of one pixel, obtained with a 40 MHz laser (25 ns repetition period) and 360 ns TDC FSR and (right) corresponding unwarping histogram. Note the resulting higher peak intensity, but the reduced depth range of 3.75 m (corresponding to 25 ns).
Fig. 6
Fig. 6 Comparison between a TOF histogram without (left) and with (right) TDC refolding, when using a 360 ns TDC FSR and a 2.86 MHz (i.e. 1/360 ns) pulsed laser. Note the signal increase by a factor 10x obtained by making the TDCs refold 10 times.
Fig. 7
Fig. 7 Single-shot precision for the 3 modalities: traditional mode (a), TDC unwarping (b) and TDC refolding (c). The single-shot precision is comparable for modes (a) and (b), and about 10% worse in mode (c), due to the oscillator long-term jitter.
Fig. 8
Fig. 8 2D (left) and 3D (center) data merge (right): the 3D distance information is rendered on a green-to-red scale and each pixel brightness is adjusted by means of the 2D image content, to obtain the final merged image with more details (e.g. hair color and shape, moustaches, etc.).
Fig. 9
Fig. 9 Frames from a 2D movie acquired at 50,000 fps showing the fast gas discharge propagation through a circular neon lamp tube (left). Note the discharge ignition (frame 50 and 550), propagation (250 and 750) and quench (450 and 950) moving periodically clockwise and then counter-clockwise. The false color scale is the number of photons in each 20 µs frame. The oscillation repeats at the 50 Hz mains supply frequency.
Fig. 10
Fig. 10 Object under observation as acquired with a conventional CCD camera (top left) and as acquired by the 32 × 32 SPAD camera with 5 × 5 intra-pixel scans, in 2D photon-counting mode (bottom left) and in 3D photon-timing mode (bottom right). The 2D and 3D merge (top right) gives a 25,600 pixel resolution image with more detailed depths and shades. The false-color scale represents the depth compared to background (bottom right). The statue was at 8 m from the camera and the overall dwell time was 150 ms.
Fig. 11
Fig. 11 Arrival time histogram for a typical pixel for the acquisition shown in Fig. 10. The histogram is performed on 16,384 frames, in which each pixel collected about 8,000 signal and 50 background photons.
Fig. 12
Fig. 12 Acquisition by the SPAD camera with 5 × 10 inter-pixel scans, in 2D photon-counting mode (left) and in 3D photon-timing mode (center). The 2D and 3D merge (right) gives a 51,200 pixel resolution image (160 × 320) with more detailed depths and shades. The false color scale represents the depth (in cm) compared to background. The target was distant 8 m from the SPAD camera. The dwell time was 300 ms.
Fig. 13
Fig. 13 Behind-foliage detection: photograph of the scene (left), image acquired by the SPAD TOF camera after reconstruction of the 3D scene (center), and after taking apart foliage contribution by thresholding photons arrival time (right). Tree and face were placed at 7 m distance from the SPAD camera.

Metrics