Abstract

A novel four-beam (named laserI, laser II, laser III and laser IV, respectively), passively Q-switched, pulse-burst ceramic Nd:YAG laser under 2 × 2 micro-lens array pumping was demonstrated for the purpose of laser-induced plasma ignition (LIPI). Multiple-beam output together with pulse-burst mode in which both high repetition rate and high pulse energy can be realized simultaneously were obtained to greatly improve the performance of LIPI. The pulse-burst contained a maximum of 5 pulses, 3 pulses, 2 pulses and 3 pulses for laserI, laser II, laser III and laser IV, respectively, and the corresponding repetition rate of laser pulses in pulse-burst was 10.8 kHz, 7.2 kHz, 6.8 kHz and 5.2 kHz, respectively. The output energy for single laser pulse in pulse-burst was in the range of 0.12 mJ to 0.22 mJ.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A novel miniaturized passively Q-switched pulse-burst laser for engine ignition

Yufei Ma, Xudong Li, Xin Yu, Rongwei Fan, Renpeng Yan, Jiangbo Peng, Xinrui Xu, Rui Sun, and Deying Chen
Opt. Express 22(20) 24655-24665 (2014)

High-peak-power passively Q-switched Nd:YAG/Cr4+:YAG composite laser with multiple-beam output

T. Dascalu, G. Croitoru, O. Grigore, and N. Pavel
Photon. Res. 4(6) 267-271 (2016)

Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition

Nicolaie Pavel, Masaki Tsunekane, and Takunori Taira
Opt. Express 19(10) 9378-9384 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. Lacaze, B. Cuenot, T. Poinsot, and M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
    [Crossref]
  2. S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46(19), 4057–4064 (2007).
    [Crossref] [PubMed]
  3. A. M. Starik, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
    [Crossref]
  4. J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
    [Crossref]
  5. T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
    [Crossref]
  6. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
    [Crossref]
  7. M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).
  8. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  9. Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
    [Crossref]
  10. Y.-F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO 4 lasers passively Q-switched with a Cr 4+ :YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
    [Crossref]
  11. G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
    [Crossref]
  12. Z. Wang, J. Yu, K. Xia, C. Zhou, and J. Li, “2 x 2 arrayed and passively Q-switched Nd:YVO4 laser under Dammann-arrayed pumping,” Appl. Opt. 53(12), 2664–2668 (2014).
    [Crossref] [PubMed]
  13. A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
    [Crossref]
  14. Y. Ma, X. Li, X. Yu, R. Fan, R. Yan, J. Peng, X. Xu, R. Sun, and D. Chen, “A novel miniaturized passively Q-switched pulse-burst laser for engine ignition,” Opt. Express 22(20), 24655–24665 (2014).
    [Crossref] [PubMed]
  15. T. X. Phuoc, “Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
    [Crossref]
  16. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all ceramics, high-peak power Nd3+:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  17. T. Taira, “Re3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
    [Crossref]
  18. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16(3), 376–388 (1999).
    [Crossref]

2014 (2)

2012 (1)

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

2011 (1)

2010 (1)

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

2009 (3)

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

G. Lacaze, B. Cuenot, T. Poinsot, and M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[Crossref]

A. M. Starik, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[Crossref]

2008 (1)

2007 (3)

S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46(19), 4057–4064 (2007).
[Crossref] [PubMed]

T. Taira, “Re3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

2006 (1)

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

2005 (1)

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).

2002 (1)

Y.-F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO 4 lasers passively Q-switched with a Cr 4+ :YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[Crossref]

2000 (1)

T. X. Phuoc, “Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
[Crossref]

1999 (1)

1998 (1)

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

Agnesi, A.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Alexander, D. R.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

Bezgin, L. V.

A. M. Starik, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[Crossref]

Braun, B.

Chen, D.

Chen, Y.-F.

Y.-F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO 4 lasers passively Q-switched with a Cr 4+ :YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[Crossref]

Cuenot, B.

G. Lacaze, B. Cuenot, T. Poinsot, and M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[Crossref]

Dallocchio, P.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Fan, R.

Fluck, R.

Franz, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Galvanauskas, A.

Gini, E.

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Iskra, K.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Joshi, S.

Kan, H.

Keller, U.

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Kofler, H.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Kopchenov, V. I.

A. M. Starik, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[Crossref]

Kopecek, H.

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).

Kroupa, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Lacaze, G.

G. Lacaze, B. Cuenot, T. Poinsot, and M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[Crossref]

Lan, Y. P.

Y.-F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO 4 lasers passively Q-switched with a Cr 4+ :YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[Crossref]

Li, J.

Li, X.

Li, X. D.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Ma, J. X.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

Ma, Y.

Ma, Y. F.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Moser, M.

Oschwald, M.

G. Lacaze, B. Cuenot, T. Poinsot, and M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[Crossref]

Paschotta, R.

Pavel, N.

Peng, J.

Phuoc, T. X.

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

T. X. Phuoc, “Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
[Crossref]

Pirzio, F.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Poinsot, T.

G. Lacaze, B. Cuenot, T. Poinsot, and M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[Crossref]

Poulain, D. E.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

Reali, G.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Sakai, H.

Spühler, G. J.

Starik, A. M.

A. M. Starik, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[Crossref]

Sun, R.

Taira, T.

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Tauer, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Titova, N. S.

A. M. Starik, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[Crossref]

Tittel, F. K.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Tsunekane, M.

Wang, C.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Wang, Z.

Weinrotter, M.

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).

Winkelhofer, E.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Wintner, E.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).

Xia, K.

Xu, X.

Yalin, A. P.

Yan, R.

Yan, R. P.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Yu, J.

Yu, J. H.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Yu, X.

Y. Ma, X. Li, X. Yu, R. Fan, R. Yan, J. Peng, X. Xu, R. Sun, and D. Chen, “A novel miniaturized passively Q-switched pulse-burst laser for engine ignition,” Opt. Express 22(20), 24655–24665 (2014).
[Crossref] [PubMed]

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Zhang, G.

Zhou, C.

Appl. Opt. (2)

Appl. Phys. B (3)

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y.-F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO 4 lasers passively Q-switched with a Cr 4+ :YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[Crossref]

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Combust. Flame (4)

T. X. Phuoc, “Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
[Crossref]

A. M. Starik, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[Crossref]

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

G. Lacaze, B. Cuenot, T. Poinsot, and M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Taira, “Re3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).

Opt. Eng. (1)

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of four-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser.
Fig. 2
Fig. 2 The individual absorbed pump energy and proportion for the four-beam laser as a function of total absorbed pump energy: (a) absorbed pump energy; (b) absorbed pump energy proportion .
Fig. 3
Fig. 3 Output energy as a function of total absorbed pump energy for four-beam ceramic Nd:YAG laser without Q-switching: (a) total output energy for transmission optimization; (b) individual output energy at T = 15%.
Fig. 4
Fig. 4 Four-beam laser profile at the absorbed pump energy of 13.63 mJ: (a) 2-D distribution; (b) 3-D distribution .
Fig. 5
Fig. 5 Output energy and pulse number as a function of total absorbed pump energy for four-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser: (a) output energy of pulse-burst laser; (b) pulse number in pulse-burst; (c) single pulse energy.
Fig. 6
Fig. 6 The repetition rate and pulse width for laser pulses in 10 Hz pulse-burst as a function of total absorbed pump energy for four-beam passively Q-switched ceramic Nd:YAG laser: (a) repetition rate; (b) pulse width.
Fig. 7
Fig. 7 The oscilloscope trace for pulse-burst and single pulse of Cr4+:YAG passively Q-switched ceramic laser.

Metrics