Abstract

We report a wavelength-tunable soliton fiber laser stably mode-locked at 1.88 GHz (the 389th harmonic of the cavity round-trip frequency) by a light-driven acoustic resonance in the core of a photonic crystal fiber. Stable high-harmonic mode-locking could be maintained when the lasing wavelength was continuously tuned from 1532 to 1566 nm by means of an optical filter placed inside the laser cavity. We report on the experimental performance of the laser, including its power scalability, super-mode noise suppression ratio, long-term repetition rate stability, short-term pulse amplitude noise and timing jitter, optical comb structure and pulse-to-pulse phase fluctuations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sub-100-fs 1.87  GHz mode-locked fiber laser using stretched-soliton effects

W. He, M. Pang, C. R. Menyuk, and P. St. J. Russell
Optica 3(12) 1366-1372 (2016)

Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes

Chang Su Jun, Ju Hee Im, Sang Hwa Yoo, Sun Young Choi, Fabian Rotermund, Dong-Il Yeom, and Byoung Yoon Kim
Opt. Express 19(20) 19775-19780 (2011)

A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2GHz

J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury
Opt. Express 15(20) 13155-13166 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  2. C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  3. I. N. Iii, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16(8), 539–541 (1991).
    [Crossref] [PubMed]
  4. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
    [Crossref] [PubMed]
  5. A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
    [Crossref]
  6. T. F. Carruthers, I. N. Duling, M. Horowitz, and C. R. Menyuk, “Dispersion management in a harmonically mode-locked fiber soliton laser,” Opt. Lett. 25(3), 153–155 (2000).
    [Crossref] [PubMed]
  7. M. Hofer, M. E. Fermann, F. Haberl, and J. E. Townsend, “Active mode locking of a neodymium-doped fiber laser using intracavity pulse compression,” Opt. Lett. 15(24), 1467–1469 (1990).
    [Crossref] [PubMed]
  8. E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60(8), 932–934 (1992).
    [Crossref]
  9. B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23(2), 123–125 (1998).
    [Crossref] [PubMed]
  10. K. S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser,” Opt. Lett. 27(20), 1758–1760 (2002).
    [Crossref] [PubMed]
  11. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
    [Crossref] [PubMed]
  12. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, “Long-range interaction of picosecond soltions through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
    [Crossref]
  13. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  14. M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
    [Crossref]
  15. M. S. Kang, N. Y. Joly, and P. St. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013).
    [Crossref] [PubMed]
  16. M. Pang, X. Jiang, G. K. L. Wong, G. Onishchukov, N. Y. Joly, G. Ahmed, and P. St. J. Russell, “Picosecond fiber laser mode-locked at 260th harmonic by GHz acoustic resonance in photonic crystal fiber core,” in Advanced Photonics (OSA Technical Digest), paper NTh4A.5 (2014).
  17. M. Pang, X. Jiang, W. He, G. K. L. Wong, G. Onishchukov, N. Y. Joly, G. Ahmed, C. R. Menyuk, and P. St. J. Russell, “Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core,” Optica 2(4), 339–342 (2015).
    [Crossref]
  18. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: mircohole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
    [Crossref]
  19. O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively mode-locked lasers including self-phase modulation and group-velocity dispersion,” Opt. Lett. 9(5), 156–158 (1984).
    [Crossref] [PubMed]
  20. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
    [Crossref]
  21. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9(1), 13–15 (1984).
    [Crossref] [PubMed]
  22. A. E. Siegman and D. J. Kuizenga, “Modulator frequency detuning effects in the FM mode-locked laser,” IEEE J. Quantum Electron. 6(12), 903–906 (1970).
  23. P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
    [Crossref]
  24. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [Crossref]
  25. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
    [Crossref]
  26. M. E. Grein, A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively mode-locked lasers,” IEEE J. Quantum Electron. 40(10), 1458–1470 (2004).
    [Crossref]
  27. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).

2015 (1)

2013 (3)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

M. S. Kang, N. Y. Joly, and P. St. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013).
[Crossref] [PubMed]

2012 (1)

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

2009 (1)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

2008 (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (1)

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

2004 (1)

M. E. Grein, A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively mode-locked lasers,” IEEE J. Quantum Electron. 40(10), 1458–1470 (2004).
[Crossref]

2002 (1)

2000 (1)

1998 (1)

1993 (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

1992 (3)

E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60(8), 932–934 (1992).
[Crossref]

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, “Long-range interaction of picosecond soltions through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

1991 (1)

1990 (1)

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

1984 (2)

1970 (1)

A. E. Siegman and D. J. Kuizenga, “Modulator frequency detuning effects in the FM mode-locked laser,” IEEE J. Quantum Electron. 6(12), 903–906 (1970).

Abedin, K. S.

Ahmed, G.

Bergman, K.

Brenn, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

Carruthers, T. F.

Chen, Y.

M. E. Grein, A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively mode-locked lasers,” IEEE J. Quantum Electron. 40(10), 1458–1470 (2004).
[Crossref]

Collings, B. C.

Dainese, P.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Demokan, M. S.

Dianov, E. M.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, “Long-range interaction of picosecond soltions through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

Duling, I. N.

Fermann, M. E.

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Fork, R. L.

Fragnito, H. L.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Gopinath, J. T.

Gordon, J. P.

Grein, M. E.

M. E. Grein, A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively mode-locked lasers,” IEEE J. Quantum Electron. 40(10), 1458–1470 (2004).
[Crossref]

K. S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser,” Opt. Lett. 27(20), 1758–1760 (2002).
[Crossref] [PubMed]

Haberl, F.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Haus, A.

M. E. Grein, A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively mode-locked lasers,” IEEE J. Quantum Electron. 40(10), 1458–1470 (2004).
[Crossref]

Haus, H. A.

He, W.

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Hofer, M.

Horowitz, M.

Iii, I. N.

Ippen, E. P.

M. E. Grein, A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively mode-locked lasers,” IEEE J. Quantum Electron. 40(10), 1458–1470 (2004).
[Crossref]

K. S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser,” Opt. Lett. 27(20), 1758–1760 (2002).
[Crossref] [PubMed]

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Jiang, L. A.

Jiang, X.

Jin, W.

Joly, N.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Joly, N. Y.

Kang, M. S.

M. S. Kang, N. Y. Joly, and P. St. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013).
[Crossref] [PubMed]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

Khelif, A.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Kimura, Y.

E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60(8), 932–934 (1992).
[Crossref]

Knight, J. C.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Knox, W. H.

Kuizenga, D. J.

A. E. Siegman and D. J. Kuizenga, “Modulator frequency detuning effects in the FM mode-locked laser,” IEEE J. Quantum Electron. 6(12), 903–906 (1970).

Laude, V.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Limpert, J.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Luchnikov, A. V.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, “Long-range interaction of picosecond soltions through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

Martinez, A.

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

Martinez, O. E.

McFerran, J. J.

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

Menyuk, C. R.

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Mollenauer, L. F.

Nakazawa, M.

E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60(8), 932–934 (1992).
[Crossref]

Nazarkin, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

Nenadovic, L.

Newbury, N. R.

Onishchukov, G.

Pang, M.

Pilipetskii, A. N.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, “Long-range interaction of picosecond soltions through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

Prokhorov, A. M.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, “Long-range interaction of picosecond soltions through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Russell, P. S. J.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Russell, P. St. J.

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Schlager, J. B.

Siegman, A. E.

A. E. Siegman and D. J. Kuizenga, “Modulator frequency detuning effects in the FM mode-locked laser,” IEEE J. Quantum Electron. 6(12), 903–906 (1970).

Stolen, R. H.

Sun, Z.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Swann, W. C.

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Townsend, J. E.

Tunnermann, A.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

Wang, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Wang, Y.

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Wiederhecker, G. S.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Wong, G. K. L.

Xiao, L.

Yamashita, S.

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

Yoshida, E.

E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60(8), 932–934 (1992).
[Crossref]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, C.-L.

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Appl. Phys. B (2)

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, “Long-range interaction of picosecond soltions through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

Appl. Phys. Lett. (2)

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60(8), 932–934 (1992).
[Crossref]

Electron. Lett. (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

IEEE J. Quantum Electron. (3)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

M. E. Grein, A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively mode-locked lasers,” IEEE J. Quantum Electron. 40(10), 1458–1470 (2004).
[Crossref]

A. E. Siegman and D. J. Kuizenga, “Modulator frequency detuning effects in the FM mode-locked laser,” IEEE J. Quantum Electron. 6(12), 903–906 (1970).

J. Lightwave Technol. (1)

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Nat. Phys. (2)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (8)

B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23(2), 123–125 (1998).
[Crossref] [PubMed]

K. S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser,” Opt. Lett. 27(20), 1758–1760 (2002).
[Crossref] [PubMed]

I. N. Iii, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16(8), 539–541 (1991).
[Crossref] [PubMed]

T. F. Carruthers, I. N. Duling, M. Horowitz, and C. R. Menyuk, “Dispersion management in a harmonically mode-locked fiber soliton laser,” Opt. Lett. 25(3), 153–155 (2000).
[Crossref] [PubMed]

M. Hofer, M. E. Fermann, F. Haberl, and J. E. Townsend, “Active mode locking of a neodymium-doped fiber laser using intracavity pulse compression,” Opt. Lett. 15(24), 1467–1469 (1990).
[Crossref] [PubMed]

M. S. Kang, N. Y. Joly, and P. St. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013).
[Crossref] [PubMed]

O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively mode-locked lasers including self-phase modulation and group-velocity dispersion,” Opt. Lett. 9(5), 156–158 (1984).
[Crossref] [PubMed]

L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9(1), 13–15 (1984).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. A (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Other (2)

M. Pang, X. Jiang, G. K. L. Wong, G. Onishchukov, N. Y. Joly, G. Ahmed, and P. St. J. Russell, “Picosecond fiber laser mode-locked at 260th harmonic by GHz acoustic resonance in photonic crystal fiber core,” in Advanced Photonics (OSA Technical Digest), paper NTh4A.5 (2014).

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a). Experiment set-up, (b). left: SEM of the solid-core PCF used, right: zoom-in of the core region. The two slightly smaller hollow channels marked by the red arrows render the PCF polarization-maintaining.
Fig. 2
Fig. 2 (a) Spectrum of the soliton laser at wavelengths between 1535 and 1565 nm in 5 nm steps. (b) Autocorrelation function of a typical output pulse (measured data-points and fit to sech2 function). The 2.5 ps FWHM autocorrelation width corresponds to a FWHM pulse duration of ~1.6 ps.
Fig. 3
Fig. 3 Measured pulse duration and 3 dB spectral bandwidth at several different wavelengths over the range 1535 to 1565 nm (5 nm steps) at a constant pump power of 1.6 W.
Fig. 4
Fig. 4 Laser operation at 1550 nm. (a) Output pulse train recorded by the 16 GHz oscilloscope over a 50 ns span. (b) Zoom-in on four consecutive pulses in (a). (c) RF spectrum of output pulse recorded by the ESA. (d). Optoacoustic gain profile of the R01 acoustic mode in the PCF core. The pulse repetition rate (1.8826 GHz, marked in blue solid line) is close to the acoustic resonant frequency (1.887 GHz, marked by the black dashed line).
Fig. 5
Fig. 5 Measured pulse duration (red squares) and 3 dB bandwidth (blue triangles) versus estimated pulse energies in the laser cavity when lasing at 1550 nm. The fitting curves are based on the assumption that the pulses are fundamental solitons.
Fig. 6
Fig. 6 (a). Zoom-in around 1st harmonic peak in the RF spectrum (100 MHz span), showing a super-mode noise suppression > 50 dB. (a) Zoom-in around 1st harmonic peak (3 kHz span), with 7 single-shots recorded in 1 h plotted in different colors. (c) Baseband SSB noise spectrum of the laser with noise floor set by the ESA and PD. (d). SSB noise spectra for the 1st, 4th and 8th harmonics in the RF spectrum of the output pulse train.
Fig. 7
Fig. 7 (a).Experimental set-up for investigating the optical comb structure and the pulse-to-pulse phase. (b). Optical spectrum of the heterodyne signal. (c). Conceptual sketch of the comb structure, consisting of axial cavity modes and the local oscillator.
Fig. 8
Fig. 8 (a) RF spectrum of the heterodyne signal of the pulse train over one cavity round-trip. Note that the both comb sets (marked by two sets of arrows) have a comb spacing of 4.84 MHz. (b) Time dependence of the heterodyne signal recorded over a single cavity round-trip.
Fig. 9
Fig. 9 (a) The output pulse train interfered by the reference laser recorded continuously for 20 µs, plotted section by section in parallel according to the cavity round-trip time (206.6ns), in each section inhabiting 389 pulses, and 96 round-trips are plotted. (b) A zoom-in plot of (a) focusing on the first 4 pulses among the 389 pulses.

Metrics