Abstract

We introduce a scheme for the parallel storage of frequency separated signals in an optical memory and demonstrate that this dual-rail storage is a suitable memory for high fidelity frequency qubits. The two signals are stored simultaneously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient echo memory techniques. Analysis of the split-Zeeman storage shows that the memory can be configured to preserve the relative amplitude and phase of the frequency separated signals. In an experimental demonstration dual-frequency pulses are recalled with 35% efficiency, 82% interference fringe visibility, and 6° phase stability. The fidelity of the frequency-qubit memory is limited by frequency-dependent polarisation rotation and ambient magnetic field fluctuations, our analysis describes how these can be addressed in an alternative configuration.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient optical quantum memory with long coherence time in cold atoms

Y.-W. Cho, G. T. Campbell, J. L. Everett, J. Bernu, D. B. Higginbottom, M. T. Cao, J. Geng, N. P. Robins, P. K. Lam, and B. C. Buchler
Optica 3(1) 100-107 (2016)

Temporally multiplexed storage of images in a gradient echo memory

Quentin Glorieux, Jeremy B. Clark, Alberto M. Marino, Zhifan Zhou, and Paul D. Lett
Opt. Express 20(11) 12350-12358 (2012)

Photon echoes generated by reversing magnetic field gradients in a rubidium vapor

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler
Opt. Lett. 33(20) 2323-2325 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
    [Crossref]
  2. M. Hosseini, B. M. Sparkes, G. T. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(2), 174 (2011).
    [Crossref] [PubMed]
  3. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
    [Crossref] [PubMed]
  4. B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
    [Crossref]
  5. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
    [Crossref] [PubMed]
  6. Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87(3), 031801 (2013)
    [Crossref]
  7. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
    [Crossref] [PubMed]
  8. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
    [Crossref] [PubMed]
  9. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
    [Crossref]
  10. M. Hosseini, B. M Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
    [Crossref] [PubMed]
  11. Y-W Cho and Y-H Kim, “Atomic vapor quantum memory for a photonic polarization qubit,” Opt. Express 18(25), 25786–25793 (2010).
    [Crossref] [PubMed]
  12. S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 22318 (2012).
    [Crossref]
  13. C. Kupchak, T. Mittiga, B. Jordaan, M. Namazi, C. Nölleke, and E. Figueroa, “Room-temperature single-photon level memory for polarization states,” Sci. Rep. 5, 7658 (2015).
    [Crossref] [PubMed]
  14. C. Clausen, F. Bussières, M. Afzelius, and N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108(19), 190503 (2012).
    [Crossref] [PubMed]
  15. D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
    [Crossref]
  16. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
    [Crossref]
  17. A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,”. Phys. Rev. Lett. 96(4), 1–4 (2006).
    [Crossref]
  18. J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, “Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms,” Phys. Rev. A 78(3), 032337 (2008).
    [Crossref]
  19. G. Hétet, M. Hosseini, B. M Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
    [Crossref] [PubMed]
  20. J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8(2), 109–112 (2013).
    [Crossref]
  21. P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
    [Crossref] [PubMed]
  22. A. MacRae, G. T. Campbell, and A. I. Lvovsky, “Matched slow pulses using double electromagnetically induced transparency,” Opt. Lett. 33(22), 2659 (2008).
    [Crossref] [PubMed]
  23. M. Hosseini, G. T. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
    [Crossref]
  24. B. M. Sparkes, “Storage and manipulation of optical information using gradient echo memory in warm vapours and cold ensembles,” Australian National University, PhD thesis (2013).
  25. D. A. Steck, “Rubidium 87 D Line Data,” (2001).
  26. J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
    [Crossref]

2015 (1)

C. Kupchak, T. Mittiga, B. Jordaan, M. Namazi, C. Nölleke, and E. Figueroa, “Room-temperature single-photon level memory for polarization states,” Sci. Rep. 5, 7658 (2015).
[Crossref] [PubMed]

2014 (3)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

2013 (4)

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8(2), 109–112 (2013).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87(3), 031801 (2013)
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref] [PubMed]

2012 (3)

C. Clausen, F. Bussières, M. Afzelius, and N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108(19), 190503 (2012).
[Crossref] [PubMed]

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 22318 (2012).
[Crossref]

2011 (3)

M. Hosseini, G. T. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

M. Hosseini, B. M. Sparkes, G. T. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(2), 174 (2011).
[Crossref] [PubMed]

2010 (3)

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref] [PubMed]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Y-W Cho and Y-H Kim, “Atomic vapor quantum memory for a photonic polarization qubit,” Opt. Express 18(25), 25786–25793 (2010).
[Crossref] [PubMed]

2009 (2)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

M. Hosseini, B. M Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[Crossref] [PubMed]

2008 (3)

2006 (1)

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,”. Phys. Rev. Lett. 96(4), 1–4 (2006).
[Crossref]

2005 (1)

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

Afzelius, M.

C. Clausen, F. Bussières, M. Afzelius, and N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108(19), 190503 (2012).
[Crossref] [PubMed]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Alexander, A. L.

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,”. Phys. Rev. Lett. 96(4), 1–4 (2006).
[Crossref]

Altin, P. A.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Amari, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Assad, S. M.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

Barbieri, M.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

Baur, S.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 22318 (2012).
[Crossref]

Bernu, J.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Buchler, B. C.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

M. Hosseini, B. M. Sparkes, G. T. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(2), 174 (2011).
[Crossref] [PubMed]

M. Hosseini, G. T. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

M. Hosseini, B. M Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[Crossref] [PubMed]

G. Hétet, M. Hosseini, B. M Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
[Crossref] [PubMed]

Bussières, F.

C. Clausen, F. Bussières, M. Afzelius, and N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108(19), 190503 (2012).
[Crossref] [PubMed]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Campbell, G. T.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

M. Hosseini, G. T. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

M. Hosseini, B. M. Sparkes, G. T. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(2), 174 (2011).
[Crossref] [PubMed]

A. MacRae, G. T. Campbell, and A. I. Lvovsky, “Matched slow pulses using double electromagnetically induced transparency,” Opt. Lett. 33(22), 2659 (2008).
[Crossref] [PubMed]

Champion, T. F. M.

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Cho, Y-W

Clausen, C.

C. Clausen, F. Bussières, M. Afzelius, and N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108(19), 190503 (2012).
[Crossref] [PubMed]

Datta, A.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

de Araújo, R. M.

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8(2), 109–112 (2013).
[Crossref]

de Riedmatten, H.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Dudin, Y. O.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87(3), 031801 (2013)
[Crossref]

Dürr, S.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 22318 (2012).
[Crossref]

England, D. G.

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Fabre, C.

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8(2), 109–112 (2013).
[Crossref]

Figueroa, E.

C. Kupchak, T. Mittiga, B. Jordaan, M. Namazi, C. Nölleke, and E. Figueroa, “Room-temperature single-photon level memory for polarization states,” Sci. Rep. 5, 7658 (2015).
[Crossref] [PubMed]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

Geng, J.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

George, M.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Gisin, N.

C. Clausen, F. Bussières, M. Afzelius, and N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108(19), 190503 (2012).
[Crossref] [PubMed]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Glorieux, Q.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref] [PubMed]

Hedges, M. P.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref] [PubMed]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref] [PubMed]

Hétet, G.

M. Hosseini, B. M Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[Crossref] [PubMed]

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, “Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms,” Phys. Rev. A 78(3), 032337 (2008).
[Crossref]

G. Hétet, M. Hosseini, B. M Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
[Crossref] [PubMed]

Higginbottom, D. B.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

Hosseini, M.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

M. Hosseini, B. M. Sparkes, G. T. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(2), 174 (2011).
[Crossref] [PubMed]

M. Hosseini, G. T. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

M. Hosseini, B. M Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[Crossref] [PubMed]

G. Hétet, M. Hosseini, B. M Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
[Crossref] [PubMed]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref] [PubMed]

Humphreys, P. C.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

Jiang, S.

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8(2), 109–112 (2013).
[Crossref]

Jin, J.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Jin, X-M

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Jordaan, B.

C. Kupchak, T. Mittiga, B. Jordaan, M. Namazi, C. Nölleke, and E. Figueroa, “Room-temperature single-photon level memory for polarization states,” Sci. Rep. 5, 7658 (2015).
[Crossref] [PubMed]

Kim, Y-H

Kolthammer, W. S.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Kröll, S.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Kupchak, C.

C. Kupchak, T. Mittiga, B. Jordaan, M. Namazi, C. Nölleke, and E. Figueroa, “Room-temperature single-photon level memory for polarization states,” Sci. Rep. 5, 7658 (2015).
[Crossref] [PubMed]

Kuzmich, A.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87(3), 031801 (2013)
[Crossref]

Lam, P. K.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

M. Hosseini, B. M. Sparkes, G. T. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(2), 174 (2011).
[Crossref] [PubMed]

M. Hosseini, G. T. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

M. Hosseini, B. M Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[Crossref] [PubMed]

G. Hétet, M. Hosseini, B. M Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
[Crossref] [PubMed]

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, “Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms,” Phys. Rev. A 78(3), 032337 (2008).
[Crossref]

Langford, N. K.

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Laurat, J.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Lauritzen, B.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Lee, K. C.

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Lettner, M.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 22318 (2012).
[Crossref]

Li, L.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87(3), 031801 (2013)
[Crossref]

Li, Y.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref] [PubMed]

Longdell, J. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref] [PubMed]

M. Hosseini, B. M Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[Crossref] [PubMed]

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, “Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms,” Phys. Rev. A 78(3), 032337 (2008).
[Crossref]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,”. Phys. Rev. Lett. 96(4), 1–4 (2006).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

Lvovsky, A. I.

MacRae, A.

Manson, N. B.

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,”. Phys. Rev. Lett. 96(4), 1–4 (2006).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

Maxein, D.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Michelberger, P. S.

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Miná, J.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Mittiga, T.

C. Kupchak, T. Mittiga, B. Jordaan, M. Namazi, C. Nölleke, and E. Figueroa, “Room-temperature single-photon level memory for polarization states,” Sci. Rep. 5, 7658 (2015).
[Crossref] [PubMed]

Namazi, M.

C. Kupchak, T. Mittiga, B. Jordaan, M. Namazi, C. Nölleke, and E. Figueroa, “Room-temperature single-photon level memory for polarization states,” Sci. Rep. 5, 7658 (2015).
[Crossref] [PubMed]

Nicolas, A.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Nölleke, C.

C. Kupchak, T. Mittiga, B. Jordaan, M. Namazi, C. Nölleke, and E. Figueroa, “Room-temperature single-photon level memory for polarization states,” Sci. Rep. 5, 7658 (2015).
[Crossref] [PubMed]

Nunn, J.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Oblak, D.

Oblak, D.l

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Reim, K. F.

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Rempe, G.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 22318 (2012).
[Crossref]

Ricken, R.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Riedl, S.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 22318 (2012).
[Crossref]

Robins, N. P.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Roslund, J.

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8(2), 109–112 (2013).
[Crossref]

Saglamyurek, E.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Sangouard, N.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Sellars, M. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref] [PubMed]

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, “Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms,” Phys. Rev. A 78(3), 032337 (2008).
[Crossref]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,”. Phys. Rev. Lett. 96(4), 1–4 (2006).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

Simon, C.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Sinclair, N.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Slater, J. A.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Sohler, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Sparkes, B. M

M. Hosseini, B. M Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[Crossref] [PubMed]

G. Hétet, M. Hosseini, B. M Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapor,” Opt. Lett. 33(20), 2323–2325 (2008).
[Crossref] [PubMed]

Sparkes, B. M.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

M. Hosseini, B. M. Sparkes, G. T. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(2), 174 (2011).
[Crossref] [PubMed]

M. Hosseini, G. T. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

B. M. Sparkes, “Storage and manipulation of optical information using gradient echo memory in warm vapours and cold ensembles,” Australian National University, PhD thesis (2013).

Sprague, M. R.

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Steck, D. A.

D. A. Steck, “Rubidium 87 D Line Data,” (2001).

Tittel, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Treps, N.

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8(2), 109–112 (2013).
[Crossref]

Usmani, I.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Vo, C.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 22318 (2012).
[Crossref]

Walmsley, I. A.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Walther, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

Zhang, W. P.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

J. Phys. B (1)

D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X-M Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, and I. A. Walmsley, “High-fidelity polarization storage in a gigahertz bandwidth quantum memory,” J. Phys. B 45(12), 124008 (2012).
[Crossref]

Nat. Commun. (1)

M. Hosseini, B. M. Sparkes, G. T. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(2), 174 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8(2), 109–112 (2013).
[Crossref]

Nat. Phys. (1)

M. Hosseini, G. T. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7(10), 794–798 (2011).
[Crossref]

Nature (3)

M. Hosseini, B. M Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[Crossref] [PubMed]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465(7301), 1052–1056 (2010).
[Crossref] [PubMed]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D.l Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

New J. Phys. (2)

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16(11), 113053 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (3)

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, “Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms,” Phys. Rev. A 78(3), 032337 (2008).
[Crossref]

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 22318 (2012).
[Crossref]

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87(3), 031801 (2013)
[Crossref]

Phys. Rev. Lett. (6)

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[Crossref] [PubMed]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Miná, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 40503 (2010).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

C. Clausen, F. Bussières, M. Afzelius, and N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108(19), 190503 (2012).
[Crossref] [PubMed]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,”. Phys. Rev. Lett. 96(4), 1–4 (2006).
[Crossref]

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Kupchak, T. Mittiga, B. Jordaan, M. Namazi, C. Nölleke, and E. Figueroa, “Room-temperature single-photon level memory for polarization states,” Sci. Rep. 5, 7658 (2015).
[Crossref] [PubMed]

Other (2)

B. M. Sparkes, “Storage and manipulation of optical information using gradient echo memory in warm vapours and cold ensembles,” Australian National University, PhD thesis (2013).

D. A. Steck, “Rubidium 87 D Line Data,” (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 A simplified energy diagram of atomic levels mF = −1, 0, 1 under constant uniform bias field B0 and reversible gradient field Bz illustrating the operation of the dual-rail gradient echo memory.
Fig. 2
Fig. 2 (a) Zeeman levels of the 87Rb D1 line split by a bias magnetic field B0. The control and signal laser fields couple the two ground states F=1 and F=2 via multiple Λ-type Raman transitions. (b) Split Raman absorption lines for the dual-GEM scheme. Non-degenerate lines at ±δ0 are produced by the bias magnetic field B0 according to the level scheme above, and broadened by an additional field gradient Bz that is applied to the atom ensemble for GEM. Free-induction decay can be seen in the centre line. Inhomogeneous broadening by the magnetic field suppresses free induction decay on the two magnetically sensitive lines.
Fig. 3
Fig. 3 The experimental layout for dual-frequency GEM in an ensemble of cold 87Rb atoms. A root signal beam is produced from the control by 6.8 GHz sideband generation (EOM) followed by frequency filtering (cavity). The beam is then split to allow independent gating and frequency control of signals 1 and 2 (AOMs). The two signal beams are recombined and sent to the atomic ensemble through an optical fibre. The 87Rb atoms are cooled and held in a magneto-optical trap setup similar to that in [24, 26]. The signal and control polarisations are indicated schematically before and after storage in the atom ensemble. The output signal polarisations | P 1 cp and | P 2 cp (defined in the text) are elliptical with major/minor axes ratio 0.97/0.24. After passing through the atom ensemble the coupling field is spatially filtered using a pinhole and razor.
Fig. 4
Fig. 4 Storage and recall of the two signal fields independently and simultaneously. (a) A typical input signal (black, recorded without the atomic ensemble) and echo pulse (red, also with light that has leaked through the memory during the write process) of signal 2 in isolation. (b) A typical input (black) and echo (blue) of signal 1 in isolation. (c) Temporally matched input pulses of both signals (black) and simultaneously recalled echoes (purple) demonstrating parallel frequency rail storage. Inset (d) shows the relative phase and fringe visibility between the two echo signals as an angle and radial displacement respectively. The first set of data has a phase stability of only 15° and visibility of 82%. The black dotted arc is the visibility limit imposed by the polarisation distinguishability of the signal outputs. The phase stability of the second set was improved to 6° by mains line triggering, but not optimised for high visibility interference

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δ 0 = μ B h B 0 1.4 MHz / G × B 0 .
t σ ^ 1 = ( γ 0 + i δ ) σ ^ 1 + i g 1 ^ 1 + i g 1 + ^ 1 +
( t + c z ) ^ 1 + = i g 1 ± N σ ^ 1 ,
g 1 + Ω + Δ 22 μ ( 1 , 1 ; 2 , 2 ) μ ( 2 , 1 ; 2 , 2 )
g 1 Ω Δ 22 μ ( 1 , 1 ; 2 , 0 ) μ ( 2 , 1 ; 2 , 0 ) + Ω Δ 21 μ ( 1 , 1 ; 1 , 0 ) μ ( 2 , 1 ; 1 , 0 ) ) ,
g 1 cp ^ 1 cp ( g 1 ^ 1 + g 1 + ^ 1 + )
g 1 cp | g 1 | 2 + | g 1 + | 2 .
t σ ^ 1 = ( γ 0 + i δ ) σ ^ 1 + i g 1 cp ^ 1 cp
( t + c z ) ^ 1 cp = i g 1 cp N σ ^ 1 .

Metrics