Abstract

In this paper a technique to measure the distributed birefringence profile along optical fibers is proposed and experimentally validated. The method is based on the spectral correlation between two sets of orthogonally-polarized measurements acquired using a phase-sensitive optical time-domain reflectometer (ϕOTDR). The correlation between the two measured spectra gives a resonance (correlation) peak at a frequency detuning that is proportional to the local refractive index difference between the two orthogonal polarization axes of the fiber. In this way the method enables local phase birefringence measurements at any position along optical fibers, so that any longitudinal fluctuation can be precisely evaluated with metric spatial resolution. The method has been experimentally validated by measuring fibers with low and high birefringence, such as standard single-mode fibers as well as conventional polarization-maintaining fibers. The technique has potential applications in the characterization of optical fibers for telecommunications as well as in distributed optical fiber sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry

Xin Lu, Marcelo A. Soto, and Luc Thévenaz
Opt. Express 25(14) 16059-16071 (2017)

Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system

Juan C. Juarez and Henry F. Taylor
Opt. Lett. 30(24) 3284-3286 (2005)

Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer

Yongkang Dong, Xi Chen, Erhu Liu, Cheng Fu, Hongying Zhang, and Zhiwei Lu
Appl. Opt. 55(28) 7810-7815 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. N. Payne, A. J. Barlow, and J. J. R. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
    [Crossref]
  2. V. Ramaswamy, W. G. French, and R. D. Standley, “Polarization characteristics of noncircular core single-mode fibers,” Appl. Opt. 17(18), 3014–3017 (1978).
    [Crossref] [PubMed]
  3. I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
    [Crossref]
  4. N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).
    [Crossref]
  5. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [Crossref]
  6. K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
    [Crossref] [PubMed]
  7. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20(6), 1060–1074 (1981).
    [Crossref] [PubMed]
  8. J. N. Ross, “Birefringence measurement in optical fibers by polarization-optical time-domain reflectometry,” Appl. Opt. 21(19), 3489–3495 (1982).
    [Crossref] [PubMed]
  9. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measurements of beat length and perturbation length in long single-mode fibers,” Opt. Lett. 25(6), 384–386 (2000).
    [Crossref] [PubMed]
  10. M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
    [Crossref]
  11. A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Reflectometric measurement of birefringence rotation in single-mode optical fibers,” Opt. Lett. 33(20), 2284–2286 (2008).
    [Crossref] [PubMed]
  12. A. Galtarossa, D. Grosso, L. Palmieri, and M. Rizzo, “Spin-profile characterization in randomly birefringent spun fibers by means of frequency-domain reflectometry,” Opt. Lett. 34(7), 1078–1080 (2009).
    [Crossref] [PubMed]
  13. L. Palmieri, D. Sarchi, and A. Galtarossa, “Distributed measurement of high electric current by means of polarimetric optical fiber sensor,” Opt. Express 23(9), 11073–11079 (2015).
    [Crossref] [PubMed]
  14. Y. Lu, X. Bao, L. Chen, S. Xie, and M. Pang, “Distributed birefringence measurement with beat period detection of homodyne Brillouin optical time-domain reflectometry,” Opt. Lett. 37(19), 3936–3938 (2012).
    [Crossref] [PubMed]
  15. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
    [Crossref]
  16. M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, and B. J. Soller, “Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain teflectometry,” J. Lightwave Technol. 24(11), 4149–4154 (2006).
    [Crossref]
  17. Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
    [Crossref] [PubMed]
  18. K. Y. Song, “Operation of Brillouin dynamic grating in single-mode optical fibers,” Opt. Lett. 36(23), 4686–4688 (2011).
    [Crossref] [PubMed]
  19. J. C. Juarez and H. F. Taylor, “Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system,” Opt. Lett. 30(24), 3284–3286 (2005).
    [Crossref] [PubMed]
  20. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  21. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, and M. Gonzalez-Herraez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
    [Crossref]
  22. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  23. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
    [Crossref] [PubMed]
  24. W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(15), 26–32 (2013).
    [Crossref]
  25. L. Palmieri, T. Geisler, and A. Galtarossa, “Effects of spin process on birefringence strength of single-mode fibers,” Opt. Express 20(1), 1–6 (2012).
    [Crossref] [PubMed]
  26. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
    [Crossref]

2015 (2)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

L. Palmieri, D. Sarchi, and A. Galtarossa, “Distributed measurement of high electric current by means of polarimetric optical fiber sensor,” Opt. Express 23(9), 11073–11079 (2015).
[Crossref] [PubMed]

2013 (3)

2012 (2)

2011 (1)

2010 (1)

2009 (3)

2008 (1)

2006 (1)

2005 (1)

2001 (1)

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

2000 (1)

1998 (2)

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
[Crossref] [PubMed]

1991 (1)

N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).
[Crossref]

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

1982 (2)

D. N. Payne, A. J. Barlow, and J. J. R. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
[Crossref]

J. N. Ross, “Birefringence measurement in optical fibers by polarization-optical time-domain reflectometry,” Appl. Opt. 21(19), 3489–3495 (1982).
[Crossref] [PubMed]

1981 (2)

1978 (1)

Alekseev, A. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Bao, X.

Barlow, A. J.

D. N. Payne, A. J. Barlow, and J. J. R. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
[Crossref]

Blondel, M.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

Chen, L.

Corredera, P.

Defosse, Y.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

Dong, Y.

Filograno, M. L.

Frazao, O.

French, W. G.

Froggatt, M.

Froggatt, M. E.

Galtarossa, A.

Geisler, T.

Gifford, D. K.

Gisin, N.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).
[Crossref]

Gonzalez-Herraez, M.

Gorshkov, B. G.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Grosso, D.

Hansen, J. J. R.

D. N. Payne, A. J. Barlow, and J. J. R. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
[Crossref]

He, Z.

Hogari, K.

Hotate, K.

Huttner, B.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

Imahama, M.

Juarez, J. C.

Kaminow, I. P.

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
[Crossref]

Koyamada, Y.

Kreger, S.

Kubota, K.

Li, W.

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(15), 26–32 (2013).
[Crossref]

Lu, Y.

Martin-Lopez, S.

Martins, H. F.

Mégret, P.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

Moore, J.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Palmieri, L.

Pang, M.

Passy, R.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

Payne, D. N.

D. N. Payne, A. J. Barlow, and J. J. R. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
[Crossref]

Pellaux, J. P.

N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).
[Crossref]

Potapov, V. T.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Ramaswamy, V.

Reecht, J.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

Rizzo, M.

Rogers, A. J.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20(6), 1060–1074 (1981).
[Crossref] [PubMed]

Ross, J. N.

Sarchi, D.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Schenato, L.

Schiano, M.

Simikin, D. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Soller, B. J.

Song, K. Y.

Soto, M. A.

Standley, R. D.

Tambosso, T.

Taylor, H. F.

Thévenaz, L.

Vdovenko, V. S.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

von der Weid, J. P.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9(7), 821–827 (1991).
[Crossref]

Wolfe, M.

Wuilpart, M.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

Xie, S.

Zou, W.

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. N. Payne, A. J. Barlow, and J. J. R. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
[Crossref]

J. Lightwave Technol. (5)

Laser Phys. (1)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Opt. Commun. (1)

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(15), 26–32 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (8)

Y. Lu, X. Bao, L. Chen, S. Xie, and M. Pang, “Distributed birefringence measurement with beat period detection of homodyne Brillouin optical time-domain reflectometry,” Opt. Lett. 37(19), 3936–3938 (2012).
[Crossref] [PubMed]

J. C. Juarez and H. F. Taylor, “Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system,” Opt. Lett. 30(24), 3284–3286 (2005).
[Crossref] [PubMed]

A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measurements of beat length and perturbation length in long single-mode fibers,” Opt. Lett. 25(6), 384–386 (2000).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
[Crossref] [PubMed]

K. Y. Song, “Operation of Brillouin dynamic grating in single-mode optical fibers,” Opt. Lett. 36(23), 4686–4688 (2011).
[Crossref] [PubMed]

A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Reflectometric measurement of birefringence rotation in single-mode optical fibers,” Opt. Lett. 33(20), 2284–2286 (2008).
[Crossref] [PubMed]

A. Galtarossa, D. Grosso, L. Palmieri, and M. Rizzo, “Spin-profile characterization in randomly birefringent spun fibers by means of frequency-domain reflectometry,” Opt. Lett. 34(7), 1078–1080 (2009).
[Crossref] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of conventional ϕOTDR systems. (a) Typical time-domain trace obtained interrogating the fiber (in a given initial state) using pulses with an optical frequency ν. (b) Trace obtained using the same frequency ν, but with the fiber showing a refractive index change Δn in the middle section (note that the traces in (a) and (b) are identical, except in the middle section). (c) The temporal profile of the trace in the central section is retrieved by changing the optical frequency of the probe pulses to ν + Δν (note that the central section in (a) and (c) are identical), where the frequency change Δν is proportional to the refractive index change Δn.
Fig. 2
Fig. 2 Principle of the proposed technique to measure the distributed profile of the fiber phase birefringence. The cross-correlation of two local ϕOTDR spectra, measured with orthogonal states of polarization, shows a correlation peak at a frequency shift Δν proportional to the local phase birefringence Δn.
Fig. 3
Fig. 3 Experimental setup used to validate the proposed method. OSA: optical spectrum analyzer, SOA: semiconductor optical amplifier, EOM: electro-optic modulator, RF: radio frequency driving voltage, DC: direct current bias voltage, FBG: fiber Bragg grating, EDFA: erbium-doped fiber amplifier, TOF: tunable optical filter, PSw: polarization switch, PC: polarization controller, FUT: fiber under test.
Fig. 4
Fig. 4 Distributed profile of phase birefringence versus distance along (a) a 90 m Panda PMF and (b) a 100 m elliptical-core PMF. Left-hand side vertical axis: Measured frequency. Right-hand side vertical axis: Birefringence value calculated using Eq. (1).
Fig. 5
Fig. 5 Distributed profile of phase birefringence versus distance along a 3 km-long SMF, obtained from the cross-correlation of two consecutive Rayleigh measurements at orthogonal polarizations. Left-hand side vertical axis: Measured frequency. Right-hand side vertical axis: Birefringence value calculated using Eq. (1).
Fig. 6
Fig. 6 Possible implementations to generate two incoherent lightwaves (having the same frequency) with orthogonal polarizations. (a) Scheme using an unbalanced Mach-Zenhder interferometer. (b) Scheme using a polarization-maintaining mirror and a Faraday mirror.
Fig. 7
Fig. 7 Distributed profile of phase birefringence versus distance along a 3 km-long SMF, obtained from the auto-correlation of a single Rayleigh measurement containing the information of the two orthogonal states of polarizations. Left-hand side vertical axis: Measured frequency. Right-hand side vertical axis: Birefringence value calculated using Eq. (1).
Fig. 8
Fig. 8 Impact of the pulse duration on the FWHM of the correlation peaks at ± ∆ν, when using Gaussian-shaped pulses. (a) Correlation spectrum obtained at a position of 200 m (in the 3 km-long SMF reported in Fig. 7), using a 2 m spatial resolution. (b) Correlation peak spectral width as a function of the spatial resolution. Theoretical estimations (straight blue line) are compared with experimental values (red squares).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n s ( ν s ) ν s = n f ( ν f ) ν f Δ ν = ν f n f g Δ n ,

Metrics