Abstract

Non-intrusive fast 3d measurements of volumetric velocity fields are necessary for understanding complex flows. Using high-speed cameras and spectroscopic measurement principles, where the Doppler frequency of scattered light is evaluated within the illuminated plane, each pixel allows one measurement and, thus, planar measurements with high data rates are possible. While scanning is one standard technique to add the third dimension, the volumetric data is not acquired simultaneously. In order to overcome this drawback, a high-speed light field camera is proposed for obtaining volumetric data with each single frame. The high-speed light field camera approach is applied to a Doppler global velocimeter with sinusoidal laser frequency modulation. As a result, a frequency multiplexing technique is required in addition to the plenoptic refocusing for eliminating the crosstalk between the measurement planes. However, the plenoptic refocusing is still necessary in order to achieve a large refocusing range for a high numerical aperture that minimizes the measurement uncertainty. Finally, two spatially separated measurement planes with 25×25 pixels each are simultaneously acquired with a measurement rate of 0.5 kHz with a single high-speed camera.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiple-plane particle image velocimetry using a light-field camera

Christoph Skupsch and Christoph Brücker
Opt. Express 21(2) 1726-1740 (2013)

Frequency division multiplexing for interferometric planar Doppler velocimetry

Thomas O. H. Charrett, Ian A. Bledowski, Stephen W. James, and Ralph P. Tatam
Appl. Opt. 53(20) 4363-4374 (2014)

Development of a modular, high-speed plenoptic-camera for 3D flow-measurement

Zu Puayen Tan, Kyle Johnson, Chris Clifford, and Brian S. Thurow
Opt. Express 27(9) 13400-13415 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Wellander, M. Richter, and M. Aldén, “Time resolved, 3D imaging (4D) of two phase flow at a repetition rate of 1 kHz,” Opt. Express 19, 21508–21514 (2011).
    [Crossref] [PubMed]
  2. B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24(1), 012002 (2013).
    [Crossref]
  3. X. Li and L. Ma, “Volumetric imaging of turbulent reactive flows at kHz based on computed tomography,” Opt. Express 22, 4768–4778 (2014).
    [Crossref] [PubMed]
  4. K. Lynch, T. Fahringer, and B. Thurow, “Three-dimensional particle image velocimetry using a plenoptic camera,” in 50th AIAA Aerospace Sciences Meeting, AIAA 2012-1056 (2012).
  5. M. A. F. Kendall, N. J. Quinlan, S. J. Thorpe, R. W. Ainsworth, and B. J. Bellhouse, “Measurements of the gas and particle flow within a converging-diverging nozzle for high speed powdered vaccine and drug delivery,” Exp. Fluids 37, 128–136 (2004).
    [Crossref]
  6. C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
    [Crossref]
  7. R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106, 457–471 (2012).
    [Crossref]
  8. A. Fischer, U. Wilke, R. Schlüßler, D. Haufe, T. Sandner, and J. Czarske, “Extension of frequency modulated Doppler global velocimetry for the investigation of unsteady spray flows,” Opt. Lasers Eng. 63, 1–10 (2014).
    [Crossref]
  9. A. Fischer, R. Schlüßler, D. Haufe, and J. Czarske, “Lock-in spectroscopy employing a high-speed camera and a micro-scanner for volumetric investigations of unsteady flows,” Opt. Lett. 39(18), 5082–5085 (2014).
    [Crossref] [PubMed]
  10. A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
    [Crossref] [PubMed]
  11. H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
    [Crossref]
  12. E. H. Adelson and J. Y. A. Wang, “Single Lens Stereo with a Plenoptic Camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  13. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Computer Science Technical Report, CSTR 2005-02 (2005).
  14. M. Levoy, “Light Fields and Computational Imaging,” Computer 39, 46–55 (2006).
    [Crossref]
  15. C. Perwaß and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
    [Crossref]
  16. A. Fischer, D. Haufe, L. Büttner, and J. Czarske, “Scattering effects at near-wall flow measurements using Doppler global velocimetry,” Appl. Opt. 50(21), 4068–4082 (2011).
    [Crossref] [PubMed]
  17. A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, “Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry,” J. Acoust. Soc. Am. 134, 1102–1111 (2013).
    [Crossref] [PubMed]
  18. A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
    [Crossref]
  19. T. O. H. Charrett, H. D. Ford, D. S. Nobes, and R. P. Tatam, “Two-frequency planar Doppler velocimetry (2-ν-PDV),” Rev. Sci. Instrum. 75(11), 4487–4496 (2004).
    [Crossref]
  20. T. O. H. Charrett, I. A. Bledowski, S. W. James, and R. P. Tatam, “Frequency division multiplexing for interferometric planar Doppler velocimetry,” Appl. Opt. 53(20), 4363–4374 (2014).
    [Crossref] [PubMed]

2014 (4)

2013 (2)

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, “Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry,” J. Acoust. Soc. Am. 134, 1102–1111 (2013).
[Crossref] [PubMed]

B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24(1), 012002 (2013).
[Crossref]

2012 (2)

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106, 457–471 (2012).
[Crossref]

C. Perwaß and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

2011 (3)

2008 (1)

2007 (1)

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[Crossref]

2006 (1)

M. Levoy, “Light Fields and Computational Imaging,” Computer 39, 46–55 (2006).
[Crossref]

2005 (1)

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
[Crossref]

2004 (2)

M. A. F. Kendall, N. J. Quinlan, S. J. Thorpe, R. W. Ainsworth, and B. J. Bellhouse, “Measurements of the gas and particle flow within a converging-diverging nozzle for high speed powdered vaccine and drug delivery,” Exp. Fluids 37, 128–136 (2004).
[Crossref]

T. O. H. Charrett, H. D. Ford, D. S. Nobes, and R. P. Tatam, “Two-frequency planar Doppler velocimetry (2-ν-PDV),” Rev. Sci. Instrum. 75(11), 4487–4496 (2004).
[Crossref]

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single Lens Stereo with a Plenoptic Camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single Lens Stereo with a Plenoptic Camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Ainsworth, R. W.

M. A. F. Kendall, N. J. Quinlan, S. J. Thorpe, R. W. Ainsworth, and B. J. Bellhouse, “Measurements of the gas and particle flow within a converging-diverging nozzle for high speed powdered vaccine and drug delivery,” Exp. Fluids 37, 128–136 (2004).
[Crossref]

Aldén, M.

Barricau, P.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
[Crossref]

Bellhouse, B. J.

M. A. F. Kendall, N. J. Quinlan, S. J. Thorpe, R. W. Ainsworth, and B. J. Bellhouse, “Measurements of the gas and particle flow within a converging-diverging nozzle for high speed powdered vaccine and drug delivery,” Exp. Fluids 37, 128–136 (2004).
[Crossref]

Beversdorff, M.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
[Crossref]

Bledowski, I. A.

Brédif, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Computer Science Technical Report, CSTR 2005-02 (2005).

Büttner, L.

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, “Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry,” J. Acoust. Soc. Am. 134, 1102–1111 (2013).
[Crossref] [PubMed]

A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
[Crossref]

A. Fischer, D. Haufe, L. Büttner, and J. Czarske, “Scattering effects at near-wall flow measurements using Doppler global velocimetry,” Appl. Opt. 50(21), 4068–4082 (2011).
[Crossref] [PubMed]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[Crossref] [PubMed]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[Crossref]

Charrett, T. O. H.

T. O. H. Charrett, I. A. Bledowski, S. W. James, and R. P. Tatam, “Frequency division multiplexing for interferometric planar Doppler velocimetry,” Appl. Opt. 53(20), 4363–4374 (2014).
[Crossref] [PubMed]

T. O. H. Charrett, H. D. Ford, D. S. Nobes, and R. P. Tatam, “Two-frequency planar Doppler velocimetry (2-ν-PDV),” Rev. Sci. Instrum. 75(11), 4487–4496 (2004).
[Crossref]

Czarske, J.

A. Fischer, U. Wilke, R. Schlüßler, D. Haufe, T. Sandner, and J. Czarske, “Extension of frequency modulated Doppler global velocimetry for the investigation of unsteady spray flows,” Opt. Lasers Eng. 63, 1–10 (2014).
[Crossref]

A. Fischer, R. Schlüßler, D. Haufe, and J. Czarske, “Lock-in spectroscopy employing a high-speed camera and a micro-scanner for volumetric investigations of unsteady flows,” Opt. Lett. 39(18), 5082–5085 (2014).
[Crossref] [PubMed]

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, “Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry,” J. Acoust. Soc. Am. 134, 1102–1111 (2013).
[Crossref] [PubMed]

A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
[Crossref]

A. Fischer, D. Haufe, L. Büttner, and J. Czarske, “Scattering effects at near-wall flow measurements using Doppler global velocimetry,” Appl. Opt. 50(21), 4068–4082 (2011).
[Crossref] [PubMed]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[Crossref] [PubMed]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[Crossref]

Duval, G.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Computer Science Technical Report, CSTR 2005-02 (2005).

Eggert, M.

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[Crossref] [PubMed]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[Crossref]

Fahringer, T.

K. Lynch, T. Fahringer, and B. Thurow, “Three-dimensional particle image velocimetry using a plenoptic camera,” in 50th AIAA Aerospace Sciences Meeting, AIAA 2012-1056 (2012).

Fischer, A.

A. Fischer, U. Wilke, R. Schlüßler, D. Haufe, T. Sandner, and J. Czarske, “Extension of frequency modulated Doppler global velocimetry for the investigation of unsteady spray flows,” Opt. Lasers Eng. 63, 1–10 (2014).
[Crossref]

A. Fischer, R. Schlüßler, D. Haufe, and J. Czarske, “Lock-in spectroscopy employing a high-speed camera and a micro-scanner for volumetric investigations of unsteady flows,” Opt. Lett. 39(18), 5082–5085 (2014).
[Crossref] [PubMed]

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, “Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry,” J. Acoust. Soc. Am. 134, 1102–1111 (2013).
[Crossref] [PubMed]

A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
[Crossref]

A. Fischer, D. Haufe, L. Büttner, and J. Czarske, “Scattering effects at near-wall flow measurements using Doppler global velocimetry,” Appl. Opt. 50(21), 4068–4082 (2011).
[Crossref] [PubMed]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[Crossref] [PubMed]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[Crossref]

Ford, H. D.

T. O. H. Charrett, H. D. Ford, D. S. Nobes, and R. P. Tatam, “Two-frequency planar Doppler velocimetry (2-ν-PDV),” Rev. Sci. Instrum. 75(11), 4487–4496 (2004).
[Crossref]

Gabet, K. N.

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106, 457–471 (2012).
[Crossref]

Hanrahan, P.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Computer Science Technical Report, CSTR 2005-02 (2005).

Haufe, D.

A. Fischer, R. Schlüßler, D. Haufe, and J. Czarske, “Lock-in spectroscopy employing a high-speed camera and a micro-scanner for volumetric investigations of unsteady flows,” Opt. Lett. 39(18), 5082–5085 (2014).
[Crossref] [PubMed]

A. Fischer, U. Wilke, R. Schlüßler, D. Haufe, T. Sandner, and J. Czarske, “Extension of frequency modulated Doppler global velocimetry for the investigation of unsteady spray flows,” Opt. Lasers Eng. 63, 1–10 (2014).
[Crossref]

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, “Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry,” J. Acoust. Soc. Am. 134, 1102–1111 (2013).
[Crossref] [PubMed]

A. Fischer, D. Haufe, L. Büttner, and J. Czarske, “Scattering effects at near-wall flow measurements using Doppler global velocimetry,” Appl. Opt. 50(21), 4068–4082 (2011).
[Crossref] [PubMed]

Horowitz, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Computer Science Technical Report, CSTR 2005-02 (2005).

James, S. W.

Jansen, U.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
[Crossref]

Jiang, N.

B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24(1), 012002 (2013).
[Crossref]

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106, 457–471 (2012).
[Crossref]

Kendall, M. A. F.

M. A. F. Kendall, N. J. Quinlan, S. J. Thorpe, R. W. Ainsworth, and B. J. Bellhouse, “Measurements of the gas and particle flow within a converging-diverging nozzle for high speed powdered vaccine and drug delivery,” Exp. Fluids 37, 128–136 (2004).
[Crossref]

Klinner, J.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
[Crossref]

König, J.

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, “Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry,” J. Acoust. Soc. Am. 134, 1102–1111 (2013).
[Crossref] [PubMed]

Lempereur, C.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
[Crossref]

Lempert, W.

B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24(1), 012002 (2013).
[Crossref]

Lempert, W. R.

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106, 457–471 (2012).
[Crossref]

Levoy, M.

M. Levoy, “Light Fields and Computational Imaging,” Computer 39, 46–55 (2006).
[Crossref]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Computer Science Technical Report, CSTR 2005-02 (2005).

Li, X.

Lynch, K.

K. Lynch, T. Fahringer, and B. Thurow, “Three-dimensional particle image velocimetry using a plenoptic camera,” in 50th AIAA Aerospace Sciences Meeting, AIAA 2012-1056 (2012).

Ma, L.

Müller, H.

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[Crossref] [PubMed]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[Crossref]

Ng, R.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Computer Science Technical Report, CSTR 2005-02 (2005).

Nobes, D. S.

T. O. H. Charrett, H. D. Ford, D. S. Nobes, and R. P. Tatam, “Two-frequency planar Doppler velocimetry (2-ν-PDV),” Rev. Sci. Instrum. 75(11), 4487–4496 (2004).
[Crossref]

Patton, R. A.

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106, 457–471 (2012).
[Crossref]

Perwaß, C.

C. Perwaß and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Quest, J.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
[Crossref]

Quinlan, N. J.

M. A. F. Kendall, N. J. Quinlan, S. J. Thorpe, R. W. Ainsworth, and B. J. Bellhouse, “Measurements of the gas and particle flow within a converging-diverging nozzle for high speed powdered vaccine and drug delivery,” Exp. Fluids 37, 128–136 (2004).
[Crossref]

Richter, M.

Sandner, T.

A. Fischer, U. Wilke, R. Schlüßler, D. Haufe, T. Sandner, and J. Czarske, “Extension of frequency modulated Doppler global velocimetry for the investigation of unsteady spray flows,” Opt. Lasers Eng. 63, 1–10 (2014).
[Crossref]

Schlüßler, R.

A. Fischer, U. Wilke, R. Schlüßler, D. Haufe, T. Sandner, and J. Czarske, “Extension of frequency modulated Doppler global velocimetry for the investigation of unsteady spray flows,” Opt. Lasers Eng. 63, 1–10 (2014).
[Crossref]

A. Fischer, R. Schlüßler, D. Haufe, and J. Czarske, “Lock-in spectroscopy employing a high-speed camera and a micro-scanner for volumetric investigations of unsteady flows,” Opt. Lett. 39(18), 5082–5085 (2014).
[Crossref] [PubMed]

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, “Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry,” J. Acoust. Soc. Am. 134, 1102–1111 (2013).
[Crossref] [PubMed]

Stockhausen, G.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
[Crossref]

Sutton, J. A.

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106, 457–471 (2012).
[Crossref]

Tatam, R. P.

T. O. H. Charrett, I. A. Bledowski, S. W. James, and R. P. Tatam, “Frequency division multiplexing for interferometric planar Doppler velocimetry,” Appl. Opt. 53(20), 4363–4374 (2014).
[Crossref] [PubMed]

T. O. H. Charrett, H. D. Ford, D. S. Nobes, and R. P. Tatam, “Two-frequency planar Doppler velocimetry (2-ν-PDV),” Rev. Sci. Instrum. 75(11), 4487–4496 (2004).
[Crossref]

Thorpe, S. J.

M. A. F. Kendall, N. J. Quinlan, S. J. Thorpe, R. W. Ainsworth, and B. J. Bellhouse, “Measurements of the gas and particle flow within a converging-diverging nozzle for high speed powdered vaccine and drug delivery,” Exp. Fluids 37, 128–136 (2004).
[Crossref]

Thurow, B.

B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24(1), 012002 (2013).
[Crossref]

K. Lynch, T. Fahringer, and B. Thurow, “Three-dimensional particle image velocimetry using a plenoptic camera,” in 50th AIAA Aerospace Sciences Meeting, AIAA 2012-1056 (2012).

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single Lens Stereo with a Plenoptic Camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Wellander, R.

Wietzke, L.

C. Perwaß and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Wilke, U.

A. Fischer, U. Wilke, R. Schlüßler, D. Haufe, T. Sandner, and J. Czarske, “Extension of frequency modulated Doppler global velocimetry for the investigation of unsteady spray flows,” Opt. Lasers Eng. 63, 1–10 (2014).
[Crossref]

Willert, C.

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106, 457–471 (2012).
[Crossref]

Computer (1)

M. Levoy, “Light Fields and Computational Imaging,” Computer 39, 46–55 (2006).
[Crossref]

Exp. Fluids (3)

M. A. F. Kendall, N. J. Quinlan, S. J. Thorpe, R. W. Ainsworth, and B. J. Bellhouse, “Measurements of the gas and particle flow within a converging-diverging nozzle for high speed powdered vaccine and drug delivery,” Exp. Fluids 37, 128–136 (2004).
[Crossref]

C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of doppler global velocimetry in cryogenic wind tunnels,” Exp. Fluids 39, 420–430 (2005).
[Crossref]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. A. Wang, “Single Lens Stereo with a Plenoptic Camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

J. Acoust. Soc. Am. (1)

A. Fischer, J. König, D. Haufe, R. Schlüßler, L. Büttner, and J. Czarske, “Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry,” J. Acoust. Soc. Am. 134, 1102–1111 (2013).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24(1), 012002 (2013).
[Crossref]

Opt. Commun. (1)

A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

A. Fischer, U. Wilke, R. Schlüßler, D. Haufe, T. Sandner, and J. Czarske, “Extension of frequency modulated Doppler global velocimetry for the investigation of unsteady spray flows,” Opt. Lasers Eng. 63, 1–10 (2014).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

C. Perwaß and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Rev. Sci. Instrum. (1)

T. O. H. Charrett, H. D. Ford, D. S. Nobes, and R. P. Tatam, “Two-frequency planar Doppler velocimetry (2-ν-PDV),” Rev. Sci. Instrum. 75(11), 4487–4496 (2004).
[Crossref]

Other (2)

K. Lynch, T. Fahringer, and B. Thurow, “Three-dimensional particle image velocimetry using a plenoptic camera,” in 50th AIAA Aerospace Sciences Meeting, AIAA 2012-1056 (2012).

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Computer Science Technical Report, CSTR 2005-02 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 FM-DGV principle for planar (2d) measurements: Arrangement of the measurement setup (left) and transmission of the molecular filter (right) illustrating the applied sinusoidal laser frequency modulation and the resulting intensity signal with/without Doppler shift. The symbol fc denotes the laser center frequency without Doppler shift.
Fig. 2
Fig. 2 FM-DGV calibration curve, where the relation between the measured velocity component v oi = ( o i ) | o i | v and the Doppler frequency fD is voi/(m/s) = 0.633 · fD/(MHz), cf. Eq. (1).
Fig. 3
Fig. 3 Setup of the high-speed light-field camera (HS-LFC): Main Lens ML (fML = 75 mm), Micro Lens Array MLA (fMLA = 0.86 mm), Relay Lens RL (fRL = 50 mm), High-Speed Camera HSC.
Fig. 4
Fig. 4 a) Calculated effective resolution ratio (ERR) and b) experimental refocusing results.
Fig. 5
Fig. 5 a) Example of a simulated focused and defocused particle image, where the red rectangle marks the area of a single pixel that is evaluated, and b) the calculated pixel intensity ratio between the defocused and focused image (i. e. the signal attenuation by defocusing) for different particle sizes.
Fig. 6
Fig. 6 a) Example of a simulated focused and defocused image with multiple particles, where the red rectangle marks the area of a single pixel that is evaluated, and b) the calculated pixel intensity ratio between the defocused and focused image (i. e. the signal attenuation by defocusing) for different particle concentrations.
Fig. 7
Fig. 7 Setup of the Light-Field-FM-DGV system with frequency division multiplexing (HS-LFC according to Fig. 3).
Fig. 8
Fig. 8 Measurement result for the steady jet flow with frequency multiplexing.
Fig. 9
Fig. 9 Measurement result for the steady jet flow without frequency multiplexing.
Fig. 10
Fig. 10 Comparison of Light-Field-FM-DGV with laser Doppler anemometry (LDA) reference measurements (confidence level of 95 % is illustrated as filled region).
Fig. 11
Fig. 11 Measurement arrangement for the spray experiment.
Fig. 12
Fig. 12 a), b) Time domain and c) frequency domain analysis of the investigated unsteady spray. The ’x’ in b) marks the measurement position (x = 2 mm, y = 2.5 mm) of the data shown in a) and c).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f D = | o i | λ v oi = 1.58 MHz / ( m / s ) v oi .

Metrics