Abstract

We propose an experiment to directly probe the local response of a superconducting single photon detector using a sharp metal tip in a scattering scanning near-field optical microscope. The optical absorption is obtained by simulating the tip-detector system, where the tip-detector is illuminated from the side, with the tip functioning as an optical antenna. The local detection efficiency is calculated by considering the recently introduced position-dependent threshold current in the detector. The calculated response for a 150 nm wide detector shows a peak close to the edge that can be spatially resolved with an estimated resolution of ∼ 20 nm, using a tip with parameters that are experimentally accessible.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superconducting nanowire single-photon detectors integrated with optical nano-antennae

Xiaolong Hu, Eric A. Dauler, Richard J. Molnar, and Karl K. Berggren
Opt. Express 19(1) 17-31 (2011)

Proposal for a superconducting photon number resolving detector with large dynamic range

Saeedeh Jahanmirinejad and Andrea Fiore
Opt. Express 20(5) 5017-5028 (2012)

Nonlinearity in single photon detection: modeling and quantum tomography

Mohsen K. Akhlaghi, A. Hamed Majedi, and Jeff S. Lundeen
Opt. Express 19(22) 21305-21312 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [Crossref] [PubMed]
  2. R. B. G. de Hollander, N. F. van Hulst, and R. P. H. Kooyman, “Near field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
    [Crossref]
  3. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
    [PubMed]
  4. Q. Wang and M. J. A. de Dood, “An absorption-based superconducting nano-detector as a near-field optical probe,” Opt. Express 21, 3682–3692 (2013).
    [Crossref] [PubMed]
  5. R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
    [Crossref]
  6. J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
    [Crossref]
  7. J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
    [Crossref] [PubMed]
  8. A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercon. 25, 2200407 (2015).
  9. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  10. E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47, 10701–10706 (2009).
    [Crossref]
  11. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
    [Crossref] [PubMed]
  12. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
    [Crossref]
  13. J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
    [Crossref] [PubMed]
  14. L. N. Bulaevskii, Matthias J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85, 014505 (2012).
    [Crossref]
  15. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
    [Crossref]
  16. Rsoft Version 8.1.0.0.7, http://optics.synopsys.com/rsoft/
  17. J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
    [Crossref]
  18. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84, 174510 (2011).
    [Crossref]
  19. H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100, 182602 (2012).
    [Crossref]
  20. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998)
    [Crossref]
  21. K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys. 63, 1733–1739 (1988)
    [Crossref]
  22. E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett. 94, 171109 (2009).
    [Crossref]
  23. D. Lim, K. Jeon, J. Hwang, H. Kim, Su. Kwon, Y. Suh, and J. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nano 6, 452–460 (2011).
    [Crossref]
  24. R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
    [Crossref] [PubMed]
  25. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [Crossref] [PubMed]
  26. L. Novotny, R. X. Bian, and X. Sunney Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [Crossref]
  27. A typical simulation involves 3 × 106 grid points and 1.8 × 104 time steps and takes approximately 400 minutes to complete on a PC (Intel Xeon E5420, 2.54 GHz, 16.0 GB RAM).
  28. Q. Wang and M. J. A. de Dood, “Near-field single-photon detection in a scattering SNOM,” Proc. SPIE 9504, 950403 (2015).
    [Crossref]
  29. N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C 112, 3766–3773 (2008).
    [Crossref]
  30. F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13, 1065–1072 (2013)
    [Crossref] [PubMed]
  31. J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by simple Shapes (North-Holland, 1969).
  32. A. V. Goncharenko, M. M. Dvoynenko, H. Chang, and J. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
    [Crossref]
  33. J. I. Gersten, “The effect of surface-roughness on surface enhanced Raman scattering,” J. Chem. Phys. 72, 5779–5780 (1980).
    [Crossref]
  34. J. D. Jackson, “Radiating systems, multipole fields and radiation,” in Classical Electrodynamics (Wiley & Sons, 1983).
  35. Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
    [Crossref]
  36. J. D. Jackson, “Maxwell equations, macroscopic electromagnetism, conservation laws,” in Classical Electrodynamics (Wiley & Sons, 1983).
  37. R. HillenbRand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy Journal of Microscopy,” J. Microsc. 202, 77–83 (2001).
    [Crossref] [PubMed]
  38. T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210, 311–314 (2003).
    [Crossref] [PubMed]
  39. J. D. Jackson, “Boundary-value problems in electrostatics: II,” in Classical Electrodynamics (Wiley & Sons, 1983).

2015 (3)

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercon. 25, 2200407 (2015).

Q. Wang and M. J. A. de Dood, “Near-field single-photon detection in a scattering SNOM,” Proc. SPIE 9504, 950403 (2015).
[Crossref]

2014 (1)

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

2013 (4)

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13, 1065–1072 (2013)
[Crossref] [PubMed]

Q. Wang and M. J. A. de Dood, “An absorption-based superconducting nano-detector as a near-field optical probe,” Opt. Express 21, 3682–3692 (2013).
[Crossref] [PubMed]

2012 (4)

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

L. N. Bulaevskii, Matthias J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85, 014505 (2012).
[Crossref]

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100, 182602 (2012).
[Crossref]

2011 (4)

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84, 174510 (2011).
[Crossref]

D. Lim, K. Jeon, J. Hwang, H. Kim, Su. Kwon, Y. Suh, and J. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nano 6, 452–460 (2011).
[Crossref]

R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

2009 (3)

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
[Crossref]

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett. 94, 171109 (2009).
[Crossref]

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47, 10701–10706 (2009).
[Crossref]

2008 (2)

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[Crossref] [PubMed]

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C 112, 3766–3773 (2008).
[Crossref]

2007 (1)

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

2006 (3)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

A. V. Goncharenko, M. M. Dvoynenko, H. Chang, and J. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[Crossref]

2003 (1)

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210, 311–314 (2003).
[Crossref] [PubMed]

2001 (1)

R. HillenbRand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy Journal of Microscopy,” J. Microsc. 202, 77–83 (2001).
[Crossref] [PubMed]

2000 (1)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[Crossref]

1998 (1)

1997 (1)

L. Novotny, R. X. Bian, and X. Sunney Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

1995 (1)

R. B. G. de Hollander, N. F. van Hulst, and R. P. H. Kooyman, “Near field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
[Crossref]

1988 (1)

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys. 63, 1733–1739 (1988)
[Crossref]

1980 (1)

J. I. Gersten, “The effect of surface-roughness on surface enhanced Raman scattering,” J. Chem. Phys. 72, 5779–5780 (1980).
[Crossref]

Aizpurua, J.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
[Crossref]

Alonso-Gonzalez, P.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Amenabar, I.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13, 1065–1072 (2013)
[Crossref] [PubMed]

Anant, V.

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Asano, H.

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys. 63, 1733–1739 (1988)
[Crossref]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

Baumberg, J. J.

R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Behr, N.

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C 112, 3766–3773 (2008).
[Crossref]

Berggren, K. K.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100, 182602 (2012).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84, 174510 (2011).
[Crossref]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Bian, R. X.

L. Novotny, R. X. Bian, and X. Sunney Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Borisov, A. G.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Bowman, J. J.

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by simple Shapes (North-Holland, 1969).

Braakman, F. R.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47, 10701–10706 (2009).
[Crossref]

Bulaevskii, L. N.

L. N. Bulaevskii, Matthias J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85, 014505 (2012).
[Crossref]

Buller, G. S.

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

Camara, N.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Chang, H.

A. V. Goncharenko, M. M. Dvoynenko, H. Chang, and J. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[Crossref]

Chen, J.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Chuvilin, A.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13, 1065–1072 (2013)
[Crossref] [PubMed]

Clem, J. R.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100, 182602 (2012).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84, 174510 (2011).
[Crossref]

Dalgarno, P. A.

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

Dauler, E. A.

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

de Dood, M. J. A.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

Q. Wang and M. J. A. de Dood, “Near-field single-photon detection in a scattering SNOM,” Proc. SPIE 9504, 950403 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

Q. Wang and M. J. A. de Dood, “An absorption-based superconducting nano-detector as a near-field optical probe,” Opt. Express 21, 3682–3692 (2013).
[Crossref] [PubMed]

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett. 94, 171109 (2009).
[Crossref]

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47, 10701–10706 (2009).
[Crossref]

de Hollander, R. B. G.

R. B. G. de Hollander, N. F. van Hulst, and R. P. H. Kooyman, “Near field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
[Crossref]

Djurišic, A. B.

Dorenbos, S. N.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47, 10701–10706 (2009).
[Crossref]

Driessen, E. F. C.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100, 182602 (2012).
[Crossref]

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett. 94, 171109 (2009).
[Crossref]

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47, 10701–10706 (2009).
[Crossref]

Dvoynenko, M. M.

A. V. Goncharenko, M. M. Dvoynenko, H. Chang, and J. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[Crossref]

Elazar, J. M.

Elorza, A. Z.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Engel, A.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercon. 25, 2200407 (2015).

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

Esteban, R.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Fiore, A.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

Frucci, G.

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

Gaggero, A.

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

Gansen, E. J.

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

Gaudio, R.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Gersten, J. I.

J. I. Gersten, “The effect of surface-roughness on surface enhanced Raman scattering,” J. Chem. Phys. 72, 5779–5780 (1980).
[Crossref]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Gol’tsman, G.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Goncharenko, A. V.

A. V. Goncharenko, M. M. Dvoynenko, H. Chang, and J. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[Crossref]

Graf, Matthias J.

L. N. Bulaevskii, Matthias J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85, 014505 (2012).
[Crossref]

Hadfield, R. H.

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Hillenbrand, R.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13, 1065–1072 (2013)
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210, 311–314 (2003).
[Crossref] [PubMed]

R. HillenbRand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy Journal of Microscopy,” J. Microsc. 202, 77–83 (2001).
[Crossref] [PubMed]

Hortensius, H. L.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100, 182602 (2012).
[Crossref]

Huang, F.

R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Huth, F.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13, 1065–1072 (2013)
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Hwang, J.

D. Lim, K. Jeon, J. Hwang, H. Kim, Su. Kwon, Y. Suh, and J. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nano 6, 452–460 (2011).
[Crossref]

Jackson, J. D.

J. D. Jackson, “Radiating systems, multipole fields and radiation,” in Classical Electrodynamics (Wiley & Sons, 1983).

J. D. Jackson, “Maxwell equations, macroscopic electromagnetism, conservation laws,” in Classical Electrodynamics (Wiley & Sons, 1983).

J. D. Jackson, “Boundary-value problems in electrostatics: II,” in Classical Electrodynamics (Wiley & Sons, 1983).

Javier Garca de Abajo, F.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Jeon, K.

D. Lim, K. Jeon, J. Hwang, H. Kim, Su. Kwon, Y. Suh, and J. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nano 6, 452–460 (2011).
[Crossref]

Katoh, Y.

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys. 63, 1733–1739 (1988)
[Crossref]

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Keilmann, F.

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210, 311–314 (2003).
[Crossref] [PubMed]

R. HillenbRand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy Journal of Microscopy,” J. Microsc. 202, 77–83 (2001).
[Crossref] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[Crossref]

Kerman, A. J.

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Kim, H.

D. Lim, K. Jeon, J. Hwang, H. Kim, Su. Kwon, Y. Suh, and J. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nano 6, 452–460 (2011).
[Crossref]

Klapwijk, T. M.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100, 182602 (2012).
[Crossref]

Knoll, B.

R. HillenbRand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy Journal of Microscopy,” J. Microsc. 202, 77–83 (2001).
[Crossref] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[Crossref]

Kogan, V. G.

L. N. Bulaevskii, Matthias J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85, 014505 (2012).
[Crossref]

Komen, I.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

Kooyman, R. P. H.

R. B. G. de Hollander, N. F. van Hulst, and R. P. H. Kooyman, “Near field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
[Crossref]

Koppens, F. H. L.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Krutokhvostov, R.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13, 1065–1072 (2013)
[Crossref] [PubMed]

Kwon, Su.

D. Lim, K. Jeon, J. Hwang, H. Kim, Su. Kwon, Y. Suh, and J. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nano 6, 452–460 (2011).
[Crossref]

Lee, T.

R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Leoni, R.

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

Lim, D.

D. Lim, K. Jeon, J. Hwang, H. Kim, Su. Kwon, Y. Suh, and J. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nano 6, 452–460 (2011).
[Crossref]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Lonsky, J.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercon. 25, 2200407 (2015).

Lopatin, S.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13, 1065–1072 (2013)
[Crossref] [PubMed]

Mahajan, S.

R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Majewski, M. L.

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Mattioli, F.

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

Michikami, O.

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys. 63, 1733–1739 (1988)
[Crossref]

Miki, S.

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

Nam, J.

D. Lim, K. Jeon, J. Hwang, H. Kim, Su. Kwon, Y. Suh, and J. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nano 6, 452–460 (2011).
[Crossref]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

Natarajan, C. M.

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

Nordlander, P.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

L. Novotny, R. X. Bian, and X. Sunney Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

O’Connor, J. A.

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

op ’t Hoog, K.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Rakic, A. D.

Ramsay, E.

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

Raschke, M. B.

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C 112, 3766–3773 (2008).
[Crossref]

Reiger, E. M.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47, 10701–10706 (2009).
[Crossref]

Renema, J. J.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

Rosfjord, K. M.

Sahin, D.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

Scherman, O. A.

R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Schilling, A.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercon. 25, 2200407 (2015).

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

Schnell, M.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13, 1065–1072 (2013)
[Crossref] [PubMed]

Senior, T. B. A.

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by simple Shapes (North-Holland, 1969).

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Stevens, M. J.

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

Suh, Y.

D. Lim, K. Jeon, J. Hwang, H. Kim, Su. Kwon, Y. Suh, and J. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nano 6, 452–460 (2011).
[Crossref]

Sunney Xie, X.

L. Novotny, R. X. Bian, and X. Sunney Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Tanabe, K.

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys. 63, 1733–1739 (1988)
[Crossref]

Tanner, M. G.

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

Taubner, T.

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210, 311–314 (2003).
[Crossref] [PubMed]

Taylor, R. W.

R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Uslenghi, P. L. E.

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by simple Shapes (North-Holland, 1969).

van Exter, M. P.

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

van Hulst, N. F.

R. B. G. de Hollander, N. F. van Hulst, and R. P. H. Kooyman, “Near field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Wang, J.

A. V. Goncharenko, M. M. Dvoynenko, H. Chang, and J. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[Crossref]

Wang, Q.

Q. Wang and M. J. A. de Dood, “Near-field single-photon detection in a scattering SNOM,” Proc. SPIE 9504, 950403 (2015).
[Crossref]

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

Q. Wang and M. J. A. de Dood, “An absorption-based superconducting nano-detector as a near-field optical probe,” Opt. Express 21, 3682–3692 (2013).
[Crossref] [PubMed]

Wang, Z.

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

Warburton, R. J.

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

Xu, H.

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
[Crossref]

Yang, J. K. W.

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Yang, Z.

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
[Crossref]

Zhang, X.

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercon. 25, 2200407 (2015).

Zhou, Z.

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

Zwiller, V.

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47, 10701–10706 (2009).
[Crossref]

ACS Nano (1)

R. W. Taylor, T. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for sers within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett. 94, 171109 (2009).
[Crossref]

A. V. Goncharenko, M. M. Dvoynenko, H. Chang, and J. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[Crossref]

R. H. Hadfield, P. A. Dalgarno, J. A. O’Connor, E. Ramsay, R. J. Warburton, E. J. Gansen, B. Baek, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 91, 241108 (2007).
[Crossref]

J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100, 182602 (2012).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, “Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors,” Eur. Phys. J. Appl. Phys. 47, 10701–10706 (2009).
[Crossref]

IEEE Trans. Appl. Supercon. (1)

A. Engel, J. Lonsky, X. Zhang, and A. Schilling, “Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model,” IEEE Trans. Appl. Supercon. 25, 2200407 (2015).

J. Appl. Phys. (1)

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys. 63, 1733–1739 (1988)
[Crossref]

J. Chem. Phys. (1)

J. I. Gersten, “The effect of surface-roughness on surface enhanced Raman scattering,” J. Chem. Phys. 72, 5779–5780 (1980).
[Crossref]

J. Microsc. (2)

R. HillenbRand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy Journal of Microscopy,” J. Microsc. 202, 77–83 (2001).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210, 311–314 (2003).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C 112, 3766–3773 (2008).
[Crossref]

J. Raman Spectrosc. (1)

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
[Crossref]

Nano Lett. (2)

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13, 1065–1072 (2013)
[Crossref] [PubMed]

J. J. Renema, Q. Wang, R. Gaudio, I. Komen, K. op ’t Hoog, D. Sahin, A. Schilling, M. P. van Exter, A. Fiore, A. Engel, and M. J. A. de Dood, “Position-dependent local detection efficiency in a nanowire superconducting single-photon detector,” Nano Lett. 15, 4541–4545 (2015)
[Crossref] [PubMed]

Nat. Commun. (1)

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Nat. Nano (1)

D. Lim, K. Jeon, J. Hwang, H. Kim, Su. Kwon, Y. Suh, and J. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nano 6, 452–460 (2011).
[Crossref]

Nat. Photonics (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Nature (1)

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
[PubMed]

Opt. Commun. (1)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[Crossref]

Opt. Express (2)

Phys. Rev. B (3)

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Universal response curve for nanowire superconducting single-photon detectors,” Phys. Rev. B 87, 174526 (2013).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84, 174510 (2011).
[Crossref]

L. N. Bulaevskii, Matthias J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85, 014505 (2012).
[Crossref]

Phys. Rev. Lett. (3)

L. Novotny, R. X. Bian, and X. Sunney Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector,” Phys. Rev. Lett. 112, 117604 (2014).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

Q. Wang and M. J. A. de Dood, “Near-field single-photon detection in a scattering SNOM,” Proc. SPIE 9504, 950403 (2015).
[Crossref]

Ultramicroscopy (1)

R. B. G. de Hollander, N. F. van Hulst, and R. P. H. Kooyman, “Near field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
[Crossref]

Other (6)

Rsoft Version 8.1.0.0.7, http://optics.synopsys.com/rsoft/

A typical simulation involves 3 × 106 grid points and 1.8 × 104 time steps and takes approximately 400 minutes to complete on a PC (Intel Xeon E5420, 2.54 GHz, 16.0 GB RAM).

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by simple Shapes (North-Holland, 1969).

J. D. Jackson, “Radiating systems, multipole fields and radiation,” in Classical Electrodynamics (Wiley & Sons, 1983).

J. D. Jackson, “Maxwell equations, macroscopic electromagnetism, conservation laws,” in Classical Electrodynamics (Wiley & Sons, 1983).

J. D. Jackson, “Boundary-value problems in electrostatics: II,” in Classical Electrodynamics (Wiley & Sons, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the tip-detector system in a scattering SNOM considered in the simulation. A 5 nm thick NbN film on a GaAs substrate is patterned into a short wire in between two tapered parts. Only the central part of the wire with a width of 150 nm and a length of 100 nm is considered in the simulation. A rounded and conical gold tip is positioned above the detector with a fixed height of 5 nm and scanned in either x- or y-direction. The tip-detector system is illuminated by a plane wave with a wave-vector k either parallel or perpendicular to the single wire. The incident field is polarized with the electric field along (parallel to) the long axis of the tip. The simulation area is 200 nm by 200 nm by 250 nm in the x, y and z-directions with a Perfectly Matched Layer at the boundaries.
Fig. 2
Fig. 2 Cross section of the 3D model with the tip above the center of the detector. The geometry of the tip is set in the way of α = 15°, r = 10 nm, and L = 200 nm. The central nanowire of the NbN detector is 150 nm wide and 5 nm thick on a semi-infinite GaAs substrate. The gap d between the tip and the detector is fixed to 5 nm. The polarization of the incident light is parallel to the long axis of the tip. The origin of the coordinates is placed at the bottom of the tip and its z-axis points to the nanowire.
Fig. 3
Fig. 3 Calculated absorption cross section Cabs of the nanowire as a function of wavelength in the presence of a tip of varying length. The black dashed line is the absorption of the nanowire without tip and the colored curves are with tips of different lengths from 50 nm to 200 nm. As a reference, the horizontal dashed line shows the geometry area of the 100 × 150 nm2 nanowire. The real and imaginary parts of the relative permittivity of NbN are shown in the inset.
Fig. 4
Fig. 4 Simulations of the electric field enhancement of a gold tip close to the nanowire along the long axis of the tip (z-axis). The black squares (Ff) are the field enhancement of a bare tip without nanowire and substrate, and it is fitted to the sharp cone model (black curve). The red dots (Fl) are the calculated field enhancement in the presence of the nanowire and the substrate. For comparison the dashed line shows the behavior of z−3 for the field enhancement in the near field of a radiative dipole. Two green vertical dashed lines separate the red dots into three regions: the ‘gap’ region (5 nm) between the tip and nanowire, the ‘NbN’ film region, and the ‘GaAs’ substrate region.
Fig. 5
Fig. 5 The position dependent time-averaged absorbed power Pabs(x, y) for a tip centered at xtip = ytip = 0 with the total illumination power of 1 W(a). The tip is located above the center of the nanowire and illuminated by light incident from the positive y-direction. The central part is circled in dashed curve with the radius of the tip curvature r = 10 nm. Electrical field components Ex (b) and Ey (c) in the 150 nm × 100 nm nanowire demonstrating the radiative electrical dipole nature of the tip. Components Ex and Ey are displayed at the moment of maximum amplitude contrast in the lobes that oscillate out of phase.
Fig. 6
Fig. 6 Local detection efficiency across the nanowire. The detection efficiency is calculated at bias currents of 0.7Ic, 0.8Ic, 0.9Ic and Ic according to Eq. (3).
Fig. 7
Fig. 7 Detector response as a function of tip position xtip for light incident from (a) the y–direction and (b) the x–direction. The unshaded area corresponds to the nanowire. The calculation uses the local detection efficiency LDE(x, Ib) in Fig. 6 at several bias currents. The dashed lines (background signal) are the detector response without tip in the system. Each curve is normalized to its maximum value to compare the shape of the response.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R ( x tip , I b ) = A ( x tip , x , y ) * LDE ( x , I b ) d x d y
A ( x tip , x , y ) = P abs ( x tip , x , y ) P total = 0 t 1 2 ω ε o Im ( ε NbN ) | E ( x tip , x , y , z ) | 2 d z P total ,
LDE ( x , I b ) = min [ 1 , exp ( ( I b I th ( x ) ) / I * ) ]

Metrics