Abstract

We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/silicon pyramid arrays structure (GO/Ag/PSi). The SERS behaviors are discussed and compared by the detection of R6G. Based on the contrast experiments with PSi, GO/PSi, Ag/PSi and GO/AgA/PSi as SERS substrate, the perfect bio-compatibility, good homogeneity and chemical stability were confirmed. We also calculated the electric field distributions using Finite-difference time-domain (FDTD) analysis to further understand the GO/Ag/PSi structure as a perfect SERS platform. These experimental and theoretical results imply that the GO/Ag/PSi with regular pyramids array is expected to be an effective substrate for label-free sensitive SERS detections in areas of medicine, food safety and biotechnology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA

Xianwu Xiu, Yu Guo, Chonghui Li, Zhen Li, Dazhen Li, Chuanwei Zang, Shouzhen Jiang, Aihua Liu, Baoyuan Man, and Chao Zhang
Opt. Mater. Express 8(4) 844-857 (2018)

In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology

Jing Yu, Yisheng Wei, Huijie Wang, Chao Zhang, Yunjia Wei, Minghui Wang, Baoyuan Man, and Fengcai Lei
Opt. Express 27(7) 9879-9894 (2019)

3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure

Jihua Xu, Chonghui Li, Haipeng Si, Xiaofei Zhao, Lin Wang, Shouzhen Jiang, Dongmei Wei, Jing Yu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21546-21557 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  2. W. Ren, Y. Fang, and E. Wang, “A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids,” ACS Nano 5(8), 6425–6433 (2011).
    [Crossref] [PubMed]
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  4. B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering (SERS),” Nanotechnology 24(24), 245704 (2013).
    [Crossref] [PubMed]
  5. L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23(5), 6793–6802 (2015).
    [Crossref] [PubMed]
  6. J. Chen, T. Mårtensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu, “Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles,” Nanotechnology 19(27), 275712 (2008).
    [Crossref] [PubMed]
  7. L. M. Chen and Y. N. Liu, “Palladium crystals of various morphologies for SERS enhancement,” CrystEngComm 13(21), 6481–6487 (2011).
    [Crossref]
  8. S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
    [Crossref] [PubMed]
  9. C. L. Tan, S. K. Lee, and Y. T. Lee, “Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate,” Opt. Express 23(5), 6254–6263 (2015).
    [Crossref] [PubMed]
  10. H. Yang, S. Q. Ni, X. Jiang, W. Jiang, and J. H. Zhan, “In situ fabrication of single-crystalline porous ZnO nanoplates on zinc foil to support silver nanoparticles as a stable SERS substrate,” CrystEngComm 14(18), 6023–6028 (2012).
    [Crossref]
  11. H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, “Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces,” Carbon 62, 422–429 (2013).
    [Crossref]
  12. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [Crossref]
  13. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
    [Crossref] [PubMed]
  14. B. N. J. Persson, K. Zhao, and Z. Zhang, “Chemical contribution to surface-enhanced Raman scattering,” Phys. Rev. Lett. 96(20), 207401 (2006).
    [Crossref] [PubMed]
  15. J. Li and Y. Fang, “An investigation of the surface enhanced Raman scattering (SERS) from a new substrate of silver-modified silver electrode by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(4-5), 994–1000 (2007).
    [Crossref] [PubMed]
  16. J. F. Arenas, M. S. Woolley, I. L. Tocón, J. C. Otero, and J. I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states,” J. Chem. Phys. 112(17), 7669 (2000).
    [Crossref]
  17. W. Lu, Y. Luo, G. Chang, and X. Sun, “Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection,” Biosens. Bioelectron. 26(12), 4791–4797 (2011).
    [Crossref] [PubMed]
  18. M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
    [Crossref]
  19. Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
    [Crossref]
  20. M. P. Stewart and J. M. Buriak, “Chemical biological applications of porous silicontechnology,” Adv. Mater. 12(12), 859–869 (2000).
    [Crossref]
  21. G. Seniutinas, G. Gervinskas, R. Verma, B. D. Gupta, F. Lapierre, P. R. Stoddart, F. Clark, S. L. McArthur, and S. Juodkazis, “Versatile SERS sensing based on black silicon,” Opt. Express 23(5), 6763–6772 (2015).
    [Crossref] [PubMed]
  22. X. Sun, N. Wang, and H. Li, “Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS),” Appl. Surf. Sci. 284, 549–555 (2013).
    [Crossref]
  23. X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
    [Crossref] [PubMed]
  24. X. Ling and J. Zhang, “Interference phenomenon in graphene enhanced Raman scattering,” J. Phys. Chem. C 115(6), 2835–2840 (2011).
    [Crossref]
  25. G. Goncalves, P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, “Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth,” Chem. Mater. 21(20), 4796–4802 (2009).
    [Crossref]
  26. X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
    [Crossref] [PubMed]
  27. J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
    [Crossref] [PubMed]
  28. S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
    [Crossref]
  29. R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
    [Crossref]

2015 (6)

L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23(5), 6793–6802 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

C. L. Tan, S. K. Lee, and Y. T. Lee, “Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate,” Opt. Express 23(5), 6254–6263 (2015).
[Crossref] [PubMed]

G. Seniutinas, G. Gervinskas, R. Verma, B. D. Gupta, F. Lapierre, P. R. Stoddart, F. Clark, S. L. McArthur, and S. Juodkazis, “Versatile SERS sensing based on black silicon,” Opt. Express 23(5), 6763–6772 (2015).
[Crossref] [PubMed]

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

2013 (3)

X. Sun, N. Wang, and H. Li, “Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS),” Appl. Surf. Sci. 284, 549–555 (2013).
[Crossref]

B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering (SERS),” Nanotechnology 24(24), 245704 (2013).
[Crossref] [PubMed]

H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, “Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces,” Carbon 62, 422–429 (2013).
[Crossref]

2012 (2)

H. Yang, S. Q. Ni, X. Jiang, W. Jiang, and J. H. Zhan, “In situ fabrication of single-crystalline porous ZnO nanoplates on zinc foil to support silver nanoparticles as a stable SERS substrate,” CrystEngComm 14(18), 6023–6028 (2012).
[Crossref]

Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
[Crossref]

2011 (5)

X. Ling and J. Zhang, “Interference phenomenon in graphene enhanced Raman scattering,” J. Phys. Chem. C 115(6), 2835–2840 (2011).
[Crossref]

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

L. M. Chen and Y. N. Liu, “Palladium crystals of various morphologies for SERS enhancement,” CrystEngComm 13(21), 6481–6487 (2011).
[Crossref]

W. Ren, Y. Fang, and E. Wang, “A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids,” ACS Nano 5(8), 6425–6433 (2011).
[Crossref] [PubMed]

W. Lu, Y. Luo, G. Chang, and X. Sun, “Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection,” Biosens. Bioelectron. 26(12), 4791–4797 (2011).
[Crossref] [PubMed]

2010 (1)

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

2009 (1)

G. Goncalves, P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, “Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth,” Chem. Mater. 21(20), 4796–4802 (2009).
[Crossref]

2008 (2)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

J. Chen, T. Mårtensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu, “Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles,” Nanotechnology 19(27), 275712 (2008).
[Crossref] [PubMed]

2007 (2)

J. Li and Y. Fang, “An investigation of the surface enhanced Raman scattering (SERS) from a new substrate of silver-modified silver electrode by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(4-5), 994–1000 (2007).
[Crossref] [PubMed]

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

2006 (2)

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

B. N. J. Persson, K. Zhao, and Z. Zhang, “Chemical contribution to surface-enhanced Raman scattering,” Phys. Rev. Lett. 96(20), 207401 (2006).
[Crossref] [PubMed]

2000 (2)

J. F. Arenas, M. S. Woolley, I. L. Tocón, J. C. Otero, and J. I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states,” J. Chem. Phys. 112(17), 7669 (2000).
[Crossref]

M. P. Stewart and J. M. Buriak, “Chemical biological applications of porous silicontechnology,” Adv. Mater. 12(12), 859–869 (2000).
[Crossref]

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Arenas, J. F.

J. F. Arenas, M. S. Woolley, I. L. Tocón, J. C. Otero, and J. I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states,” J. Chem. Phys. 112(17), 7669 (2000).
[Crossref]

Astilean, S.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Baia, L.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Baia, M.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Buriak, J. M.

M. P. Stewart and J. M. Buriak, “Chemical biological applications of porous silicontechnology,” Adv. Mater. 12(12), 859–869 (2000).
[Crossref]

Cai, H.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Chan, J. W.

Chang, G.

W. Lu, Y. Luo, G. Chang, and X. Sun, “Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection,” Biosens. Bioelectron. 26(12), 4791–4797 (2011).
[Crossref] [PubMed]

Chang, G. H.

Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
[Crossref]

Chang, L.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

Chen, J.

J. Chen, T. Mårtensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu, “Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles,” Nanotechnology 19(27), 275712 (2008).
[Crossref] [PubMed]

Chen, L. M.

L. M. Chen and Y. N. Liu, “Palladium crystals of various morphologies for SERS enhancement,” CrystEngComm 13(21), 6481–6487 (2011).
[Crossref]

Chen, S.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

Clark, F.

Cong, C.

H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, “Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces,” Carbon 62, 422–429 (2013).
[Crossref]

Cordovez, B.

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Deppert, K.

J. Chen, T. Mårtensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu, “Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles,” Nanotechnology 19(27), 275712 (2008).
[Crossref] [PubMed]

Dick, K. A.

J. Chen, T. Mårtensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu, “Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles,” Nanotechnology 19(27), 275712 (2008).
[Crossref] [PubMed]

Earhart, C. M.

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Fang, Y.

W. Ren, Y. Fang, and E. Wang, “A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids,” ACS Nano 5(8), 6425–6433 (2011).
[Crossref] [PubMed]

J. Li and Y. Fang, “An investigation of the surface enhanced Raman scattering (SERS) from a new substrate of silver-modified silver electrode by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(4-5), 994–1000 (2007).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Gao, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Gervinskas, G.

Goncalves, G.

G. Goncalves, P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, “Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth,” Chem. Mater. 21(20), 4796–4802 (2009).
[Crossref]

Gong, Y. P.

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Grácio, J.

G. Goncalves, P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, “Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth,” Chem. Mater. 21(20), 4796–4802 (2009).
[Crossref]

Granadeiro, C. M.

G. Goncalves, P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, “Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth,” Chem. Mater. 21(20), 4796–4802 (2009).
[Crossref]

Gupta, B. D.

Hone, J.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Hou, J. G.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Hu, H.

H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, “Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces,” Carbon 62, 422–429 (2013).
[Crossref]

Huang, T. J.

B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering (SERS),” Nanotechnology 24(24), 245704 (2013).
[Crossref] [PubMed]

Hui, R. Q.

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jensen, L.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

Jiang, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Jiang, W.

H. Yang, S. Q. Ni, X. Jiang, W. Jiang, and J. H. Zhan, “In situ fabrication of single-crystalline porous ZnO nanoplates on zinc foil to support silver nanoparticles as a stable SERS substrate,” CrystEngComm 14(18), 6023–6028 (2012).
[Crossref]

Jiang, X.

H. Yang, S. Q. Ni, X. Jiang, W. Jiang, and J. H. Zhan, “In situ fabrication of single-crystalline porous ZnO nanoplates on zinc foil to support silver nanoparticles as a stable SERS substrate,” CrystEngComm 14(18), 6023–6028 (2012).
[Crossref]

Juodkazis, S.

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Kiraly, B.

B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering (SERS),” Nanotechnology 24(24), 245704 (2013).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kong, L.

Konzelmann, A.

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lapierre, F.

Lee, C.

Lee, S. K.

Lee, Y. T.

Li, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

X. Sun, N. Wang, and H. Li, “Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS),” Appl. Surf. Sci. 284, 549–555 (2013).
[Crossref]

Li, J.

J. Li and Y. Fang, “An investigation of the surface enhanced Raman scattering (SERS) from a new substrate of silver-modified silver electrode by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(4-5), 994–1000 (2007).
[Crossref] [PubMed]

Li, X.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Li, Z.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Lin, J.

H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, “Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces,” Carbon 62, 422–429 (2013).
[Crossref]

Ling, X.

X. Ling and J. Zhang, “Interference phenomenon in graphene enhanced Raman scattering,” J. Phys. Chem. C 115(6), 2835–2840 (2011).
[Crossref]

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

Liu, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Liu, J. W.

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Liu, Q. F.

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Liu, S.

Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
[Crossref]

Liu, Y. N.

L. M. Chen and Y. N. Liu, “Palladium crystals of various morphologies for SERS enhancement,” CrystEngComm 13(21), 6481–6487 (2011).
[Crossref]

Lu, R. T.

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Lu, W.

W. Lu, Y. Luo, G. Chang, and X. Sun, “Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection,” Biosens. Bioelectron. 26(12), 4791–4797 (2011).
[Crossref] [PubMed]

Lu, W. B.

Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
[Crossref]

Luo, Y.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

W. Lu, Y. Luo, G. Chang, and X. Sun, “Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection,” Biosens. Bioelectron. 26(12), 4791–4797 (2011).
[Crossref] [PubMed]

Man, B.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Marcos, J. I.

J. F. Arenas, M. S. Woolley, I. L. Tocón, J. C. Otero, and J. I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states,” J. Chem. Phys. 112(17), 7669 (2000).
[Crossref]

Marques, P.

G. Goncalves, P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, “Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth,” Chem. Mater. 21(20), 4796–4802 (2009).
[Crossref]

Mårtensson, T.

J. Chen, T. Mårtensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu, “Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles,” Nanotechnology 19(27), 275712 (2008).
[Crossref] [PubMed]

McArthur, S. L.

Ni, S. Q.

H. Yang, S. Q. Ni, X. Jiang, W. Jiang, and J. H. Zhan, “In situ fabrication of single-crystalline porous ZnO nanoplates on zinc foil to support silver nanoparticles as a stable SERS substrate,” CrystEngComm 14(18), 6023–6028 (2012).
[Crossref]

Ni, Z.

H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, “Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces,” Carbon 62, 422–429 (2013).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nogueira, H. I. S.

G. Goncalves, P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, “Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth,” Chem. Mater. 21(20), 4796–4802 (2009).
[Crossref]

Otero, J. C.

J. F. Arenas, M. S. Woolley, I. L. Tocón, J. C. Otero, and J. I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states,” J. Chem. Phys. 112(17), 7669 (2000).
[Crossref]

Pan, N.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Persson, B. N. J.

B. N. J. Persson, K. Zhao, and Z. Zhang, “Chemical contribution to surface-enhanced Raman scattering,” Phys. Rev. Lett. 96(20), 207401 (2006).
[Crossref] [PubMed]

Poh, C. K.

H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, “Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces,” Carbon 62, 422–429 (2013).
[Crossref]

Popp, J.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Qi, J.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

Qin, X. Y.

Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
[Crossref]

Qiu, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Ren, W.

W. Ren, Y. Fang, and E. Wang, “A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids,” ACS Nano 5(8), 6425–6433 (2011).
[Crossref] [PubMed]

Samuelson, L.

J. Chen, T. Mårtensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu, “Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles,” Nanotechnology 19(27), 275712 (2008).
[Crossref] [PubMed]

Schatz, G. C.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

Seniutinas, G.

Singh, M. K.

G. Goncalves, P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, “Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth,” Chem. Mater. 21(20), 4796–4802 (2009).
[Crossref]

Stewart, M. P.

M. P. Stewart and J. M. Buriak, “Chemical biological applications of porous silicontechnology,” Adv. Mater. 12(12), 859–869 (2000).
[Crossref]

Stoddart, P. R.

Sun, X.

X. Sun, N. Wang, and H. Li, “Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS),” Appl. Surf. Sci. 284, 549–555 (2013).
[Crossref]

W. Lu, Y. Luo, G. Chang, and X. Sun, “Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection,” Biosens. Bioelectron. 26(12), 4791–4797 (2011).
[Crossref] [PubMed]

Sun, X. P.

Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
[Crossref]

Sung, J.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

Tan, C. L.

Tian, J. Q.

Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
[Crossref]

Tocón, I. L.

J. F. Arenas, M. S. Woolley, I. L. Tocón, J. C. Otero, and J. I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states,” J. Chem. Phys. 112(17), 7669 (2000).
[Crossref]

Van Duyne, R. P.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

Verma, R.

Wang, E.

W. Ren, Y. Fang, and E. Wang, “A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids,” ACS Nano 5(8), 6425–6433 (2011).
[Crossref] [PubMed]

Wang, J.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Wang, L.

Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
[Crossref]

Wang, N.

X. Sun, N. Wang, and H. Li, “Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS),” Appl. Surf. Sci. 284, 549–555 (2013).
[Crossref]

Wang, X.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wei, J.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Woolley, M. S.

J. F. Arenas, M. S. Woolley, I. L. Tocón, J. C. Otero, and J. I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states,” J. Chem. Phys. 112(17), 7669 (2000).
[Crossref]

Wu, J. Z.

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Xin, M.

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Xu, F.

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Xu, H.

J. Chen, T. Mårtensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu, “Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles,” Nanotechnology 19(27), 275712 (2008).
[Crossref] [PubMed]

Xu, H. Q.

J. Chen, T. Mårtensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu, “Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles,” Nanotechnology 19(27), 275712 (2008).
[Crossref] [PubMed]

Xu, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Yang, H.

H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, “Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces,” Carbon 62, 422–429 (2013).
[Crossref]

H. Yang, S. Q. Ni, X. Jiang, W. Jiang, and J. H. Zhan, “In situ fabrication of single-crystalline porous ZnO nanoplates on zinc foil to support silver nanoparticles as a stable SERS substrate,” CrystEngComm 14(18), 6023–6028 (2012).
[Crossref]

Yang, S.

B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering (SERS),” Nanotechnology 24(24), 245704 (2013).
[Crossref] [PubMed]

Yu, T.

H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, “Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces,” Carbon 62, 422–429 (2013).
[Crossref]

Yu, X.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Zhan, J. H.

H. Yang, S. Q. Ni, X. Jiang, W. Jiang, and J. H. Zhan, “In situ fabrication of single-crystalline porous ZnO nanoplates on zinc foil to support silver nanoparticles as a stable SERS substrate,” CrystEngComm 14(18), 6023–6028 (2012).
[Crossref]

Zhang, J.

X. Ling and J. Zhang, “Interference phenomenon in graphene enhanced Raman scattering,” J. Phys. Chem. C 115(6), 2835–2840 (2011).
[Crossref]

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

Zhang, W.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Zhang, Y. W.

Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
[Crossref]

Zhang, Z.

B. N. J. Persson, K. Zhao, and Z. Zhang, “Chemical contribution to surface-enhanced Raman scattering,” Phys. Rev. Lett. 96(20), 207401 (2006).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

Zhao, K.

B. N. J. Persson, K. Zhao, and Z. Zhang, “Chemical contribution to surface-enhanced Raman scattering,” Phys. Rev. Lett. 96(20), 207401 (2006).
[Crossref] [PubMed]

Zhao, Y.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

Zou, S.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

ACS Nano (2)

W. Ren, Y. Fang, and E. Wang, “A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids,” ACS Nano 5(8), 6425–6433 (2011).
[Crossref] [PubMed]

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

M. P. Stewart and J. M. Buriak, “Chemical biological applications of porous silicontechnology,” Adv. Mater. 12(12), 859–869 (2000).
[Crossref]

Appl. Phys. Lett. (1)

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Appl. Surf. Sci. (1)

X. Sun, N. Wang, and H. Li, “Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS),” Appl. Surf. Sci. 284, 549–555 (2013).
[Crossref]

Biosens. Bioelectron. (1)

W. Lu, Y. Luo, G. Chang, and X. Sun, “Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection,” Biosens. Bioelectron. 26(12), 4791–4797 (2011).
[Crossref] [PubMed]

Carbon (3)

H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, “Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces,” Carbon 62, 422–429 (2013).
[Crossref]

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui, and J. Z. Wu, “High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates,” Carbon 86, 78–85 (2015).
[Crossref]

Chem. Mater. (1)

G. Goncalves, P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, “Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth,” Chem. Mater. 21(20), 4796–4802 (2009).
[Crossref]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

CrystEngComm (2)

H. Yang, S. Q. Ni, X. Jiang, W. Jiang, and J. H. Zhan, “In situ fabrication of single-crystalline porous ZnO nanoplates on zinc foil to support silver nanoparticles as a stable SERS substrate,” CrystEngComm 14(18), 6023–6028 (2012).
[Crossref]

L. M. Chen and Y. N. Liu, “Palladium crystals of various morphologies for SERS enhancement,” CrystEngComm 13(21), 6481–6487 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

J. Chem. Phys. (1)

J. F. Arenas, M. S. Woolley, I. L. Tocón, J. C. Otero, and J. I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states,” J. Chem. Phys. 112(17), 7669 (2000).
[Crossref]

J. Phys. Chem. C (1)

X. Ling and J. Zhang, “Interference phenomenon in graphene enhanced Raman scattering,” J. Phys. Chem. C 115(6), 2835–2840 (2011).
[Crossref]

Nanotechnology (2)

B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering (SERS),” Nanotechnology 24(24), 245704 (2013).
[Crossref] [PubMed]

J. Chen, T. Mårtensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu, “Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles,” Nanotechnology 19(27), 275712 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

B. N. J. Persson, K. Zhao, and Z. Zhang, “Chemical contribution to surface-enhanced Raman scattering,” Phys. Rev. Lett. 96(20), 207401 (2006).
[Crossref] [PubMed]

RSC Advances (1)

Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RSC Advances 2(2), 538–545 (2012).
[Crossref]

Science (2)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Small (1)

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

J. Li and Y. Fang, “An investigation of the surface enhanced Raman scattering (SERS) from a new substrate of silver-modified silver electrode by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(4-5), 994–1000 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of the processes for the fabrication of the GO/Ag/Psi SERS substrate.
Fig. 2
Fig. 2 (a) SEM image of the PSi sample. (b) TEM of the obtained GO. (c) SEM image of the PSi sample after the GO films coating. (d) Raman spectrum of the GO/PSi. (e) TEM of the obtained Ag nanoparticles. (f) SEM image of the PSi sample after the Ag nanoparticles coating. (g) and (h) are SEM images of the GO/Ag/PSi sample under different magnification. (i) SEM image of the GO/AgA/PSi sample.
Fig. 3
Fig. 3 (a) The Raman spectra of R6G on the GO/Ag/PSi substrate from 10−4 to 10−7M. (b) and (c) are respectively the Raman intensity of R6G peaks at 613cm−1 and 774cm−1 as a function of the molecular concentration, in log scale. (d) The Raman spectra of R6G with a concentration of 10−4M randomly collected on the GO/Ag/PSi substrate. (e) The Raman spectra of R6G with a concentration of 10−7M randomly collected on the GO/Ag/PSi substrate.
Fig. 4
Fig. 4 (a)-(c) are respectively the Raman spectra of R6G with different concentrations on the GO/PSi, Ag/PSi and GO/AgA/PSi substrate. (d) and (e) are respectively the intensity of the signal at 613 cm−1 with a concentration of 10−4M and 774cm−1 with a concentration of 10−7M collected using respectively the GO/PSi, Ag/PSi, GO/AgA/PSi and GO/Ag/PSi as substrates. (f)-(h) are respectively the Raman intensity of R6G peaks at 613cm−1 as a function of the molecular concentration on the GO/PSi, Ag/PSi and GO/AgA/PSi substrate, in log scale.
Fig. 5
Fig. 5 (a) and (b) are respectively the SERS spectra of the R6G without and with the oxidation treatment. (c) the EDS result of the Ag/PSi substrate after the expose of oxygen.
Fig. 6
Fig. 6 (a) and (b) are respectively the y-z and x-z views of the electric field distribution on the PSi sample. (c) x-y view of the electric field distribution on the Ag/Si structure with 15nm Ag nanoparticles and 15nm gap. (d) x-y view of the electric field distribution on the Ag/Si structure with 50nm Ag nanoparticles and 5nm gap. (e)-(f) are respectively the x-y views of the electric field distribution on the Ag/Si structure with 15 nm Ag nanoparticles and 15nm gap with incident power 3.2 × 10−7, 3.2 × 10−6 and 3.2 × 10−5W. (h) x-y view of the electric field distribution on the PSi sample. (i) and (j) are respectively the x-y views of the electric field distribution on the Ag/Si structure respectively with 15 and 50 nm Ag nanoparticles.

Tables (1)

Tables Icon

Table 1 Enhancement on 613 and 774 cm−1 versus substrates

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E F = I S E R S I R a m a n N R a m a n N S E R S ,

Metrics