Abstract

This study demonstrates the metal-enhanced fluorescence of adenine using aluminum nanoparticle arrays in the deep UV range. It achieves the reproducible intensity enhancement of intrinsic fluorescence up to 80 on well-defined aluminum nanoparticle arrays at 257 nm excitation. In addition to a high signal enhancement, a strong modification of the fluorescence emission spectrum of adenine is observed. This study illustrates that the label-free detection of DNA bases and proteins that have low intrinsic fluorescence and absorption bands in the deep UV range can be facilitated using aluminum nanostructures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aluminum nanoparticle films with an enhanced hot-spot intensity for high-efficiency SERS

Zhen Li, Chonghui Li, Jing Yu, Zhaoxiang Li, Xiaofei Zhao, Aihua Liu, Shouzhen Jiang, Cheng Yang, Chao Zhang, and Baoyuan Man
Opt. Express 28(7) 9174-9185 (2020)

Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays

Hsiang-Lin Huang, Chen Feng Chou, Shi Hua Shiao, Yi-Cheng Liu, Jian-Jang Huang, Shien Uang Jen, and Hai-Pang Chiang
Opt. Express 21(S5) A901-A908 (2013)

Aluminum oxide nanostructure-based substrates for fluorescence enhancement

Xiang Li, Yuan He, Tianhua Zhang, and Long Que
Opt. Express 20(19) 21272-21277 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2001).
  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  3. J. W. Eastman and E. J. Rosa, “The fluorescence of adenine. The effects of solvent and temperature on the quantum yield,” Photochem. Photobiol. 7(2), 189–201 (1968).
    [Crossref] [PubMed]
  4. P. R. Callis, “Electronic states and luminescence of nucleic acid systems,” Annu. Rev. Phys. Chem. 34(1), 329–357 (1983).
    [Crossref]
  5. D. Onidas, D. Markovitsi, S. Marguet, A. Sharonov, and T. Gustavsson, “Fluorescence properties of DNA nucleosides and nucleotides: A refined steady-state and femtosecond investigation,” J. Phys. Chem. B 106(43), 11367–11374 (2002).
    [Crossref]
  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  7. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
    [Crossref] [PubMed]
  8. J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
    [Crossref] [PubMed]
  9. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
    [Crossref]
  10. C. D. Geddes, ed., Metal-Enhanced Fluorescence (John Wiley & Sons, 2010).
  11. Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. App. Phys. 104, 083107 (2008).
  12. J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
    [Crossref] [PubMed]
  13. S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
    [Crossref] [PubMed]
  14. D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
    [Crossref] [PubMed]
  15. S. K. Jha, Y. Ekinci, M. Agio, and J. F. Löffler, “Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: Ultrasensitive, real-time and reproducible detection of TNT,” Analyst (Lond.) 140(16), 5671–5677 (2015).
    [Crossref] [PubMed]
  16. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
    [Crossref] [PubMed]
  17. F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics 5(2), 169–174 (2010).
    [Crossref]
  18. X. Jiao and S. Blair, “Optical antenna design for fluorescence enhancement in the ultraviolet,” Opt. Express 20(28), 29909–29922 (2012).
    [Crossref] [PubMed]
  19. M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
    [Crossref] [PubMed]
  20. M. H. Chowdhury, K. Ray, M. L. Johnson, S. K. Gray, J. Pond, and J. R. Lakowicz, “On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing,” J Phys Chem C Nanomater Interfaces 114(16), 7448–7461 (2010).
    [Crossref] [PubMed]
  21. M. H. Chowdhury, S. Chakraborty, J. R. Lakowicz, and K. Ray, “Feasibility of using bimetallic plasmonic nanostructures to enhance the intrinsic emission of biomolecules,” J Phys Chem C Nanomater Interfaces 115(34), 16879–16891 (2011).
    [Crossref] [PubMed]
  22. A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
    [Crossref] [PubMed]
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  24. E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy (Elsevier, 2009).
  25. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
    [Crossref]
  26. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [Crossref]
  27. J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finitesized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
    [Crossref]
  28. J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized suface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B 79(7), 073412 (2009).
    [Crossref]
  29. J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
    [Crossref] [PubMed]
  30. N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
    [Crossref] [PubMed]
  31. H. Mishra, B. L. Mali, J. Karolin, A. I. Dragan, and C. D. Geddes, “Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system,” Phys. Chem. Chem. Phys. 15(45), 19538–19544 (2013).
    [Crossref] [PubMed]
  32. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  33. L. Zhao, T. Ming, H. Chen, Y. Liang, and J. Wang, “Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods,” Nanoscale 3(9), 3849–3859 (2011).
    [Crossref] [PubMed]
  34. C.-Y. Wu, C.-L. He, H.-M. Lee, H.-Y. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114(30), 12987–12993 (2010).
    [Crossref]
  35. E. C. LeRu, P. G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, “Mechanisms of spectral profile modification in surface-enhanced fluorescence,” J. Phys. Chem. C 111(44), 16076–16079 (2007).
    [Crossref]
  36. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
    [Crossref] [PubMed]
  37. R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
    [Crossref]
  38. Q. Li and S. Seeger, “Label-free detection of protein interactions using deep UV fluorescence lifetime microscopy,” Anal. Biochem. 367(1), 104–110 (2007).
    [Crossref] [PubMed]
  39. P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
    [Crossref] [PubMed]

2015 (1)

S. K. Jha, Y. Ekinci, M. Agio, and J. F. Löffler, “Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: Ultrasensitive, real-time and reproducible detection of TNT,” Analyst (Lond.) 140(16), 5671–5677 (2015).
[Crossref] [PubMed]

2014 (1)

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

2013 (5)

H. Mishra, B. L. Mali, J. Karolin, A. I. Dragan, and C. D. Geddes, “Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system,” Phys. Chem. Chem. Phys. 15(45), 19538–19544 (2013).
[Crossref] [PubMed]

A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
[Crossref] [PubMed]

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

2012 (3)

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

X. Jiao and S. Blair, “Optical antenna design for fluorescence enhancement in the ultraviolet,” Opt. Express 20(28), 29909–29922 (2012).
[Crossref] [PubMed]

N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
[Crossref] [PubMed]

2011 (2)

L. Zhao, T. Ming, H. Chen, Y. Liang, and J. Wang, “Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods,” Nanoscale 3(9), 3849–3859 (2011).
[Crossref] [PubMed]

M. H. Chowdhury, S. Chakraborty, J. R. Lakowicz, and K. Ray, “Feasibility of using bimetallic plasmonic nanostructures to enhance the intrinsic emission of biomolecules,” J Phys Chem C Nanomater Interfaces 115(34), 16879–16891 (2011).
[Crossref] [PubMed]

2010 (3)

M. H. Chowdhury, K. Ray, M. L. Johnson, S. K. Gray, J. Pond, and J. R. Lakowicz, “On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing,” J Phys Chem C Nanomater Interfaces 114(16), 7448–7461 (2010).
[Crossref] [PubMed]

F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics 5(2), 169–174 (2010).
[Crossref]

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-Y. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114(30), 12987–12993 (2010).
[Crossref]

2009 (2)

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized suface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B 79(7), 073412 (2009).
[Crossref]

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

2008 (5)

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[Crossref]

Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. App. Phys. 104, 083107 (2008).

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finitesized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[Crossref]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

2007 (5)

Q. Li and S. Seeger, “Label-free detection of protein interactions using deep UV fluorescence lifetime microscopy,” Anal. Biochem. 367(1), 104–110 (2007).
[Crossref] [PubMed]

E. C. LeRu, P. G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, “Mechanisms of spectral profile modification in surface-enhanced fluorescence,” J. Phys. Chem. C 111(44), 16076–16079 (2007).
[Crossref]

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[Crossref] [PubMed]

2006 (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

2005 (1)

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[Crossref] [PubMed]

2003 (1)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

2002 (1)

D. Onidas, D. Markovitsi, S. Marguet, A. Sharonov, and T. Gustavsson, “Fluorescence properties of DNA nucleosides and nucleotides: A refined steady-state and femtosecond investigation,” J. Phys. Chem. B 106(43), 11367–11374 (2002).
[Crossref]

1983 (1)

P. R. Callis, “Electronic states and luminescence of nucleic acid systems,” Annu. Rev. Phys. Chem. 34(1), 329–357 (1983).
[Crossref]

1968 (1)

J. W. Eastman and E. J. Rosa, “The fluorescence of adenine. The effects of solvent and temperature on the quantum yield,” Photochem. Photobiol. 7(2), 189–201 (1968).
[Crossref] [PubMed]

Agio, M.

S. K. Jha, Y. Ekinci, M. Agio, and J. F. Löffler, “Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: Ultrasensitive, real-time and reproducible detection of TNT,” Analyst (Lond.) 140(16), 5671–5677 (2015).
[Crossref] [PubMed]

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Ahmed, Z.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Akbay, N.

N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
[Crossref] [PubMed]

Akimoto, R.

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Aubard, J.

E. C. LeRu, P. G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, “Mechanisms of spectral profile modification in surface-enhanced fluorescence,” J. Phys. Chem. C 111(44), 16076–16079 (2007).
[Crossref]

Auguié, B.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized suface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B 79(7), 073412 (2009).
[Crossref]

Bakker, R. M.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Barnes, W. L.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized suface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B 79(7), 073412 (2009).
[Crossref]

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Baumberg, J. J.

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

Belder, D.

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[Crossref] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Blair, S.

X. Jiao and S. Blair, “Optical antenna design for fluorescence enhancement in the ultraviolet,” Opt. Express 20(28), 29909–29922 (2012).
[Crossref] [PubMed]

F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics 5(2), 169–174 (2010).
[Crossref]

Boltasseva, A.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Burrows, C. P.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized suface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B 79(7), 073412 (2009).
[Crossref]

Callis, P. R.

P. R. Callis, “Electronic states and luminescence of nucleic acid systems,” Annu. Rev. Phys. Chem. 34(1), 329–357 (1983).
[Crossref]

Chakraborty, S.

M. H. Chowdhury, S. Chakraborty, J. R. Lakowicz, and K. Ray, “Feasibility of using bimetallic plasmonic nanostructures to enhance the intrinsic emission of biomolecules,” J Phys Chem C Nanomater Interfaces 115(34), 16879–16891 (2011).
[Crossref] [PubMed]

Chang, W.-S.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Chen, H.

L. Zhao, T. Ming, H. Chen, Y. Liang, and J. Wang, “Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods,” Nanoscale 3(9), 3849–3859 (2011).
[Crossref] [PubMed]

Chen, H.-Y.

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-Y. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114(30), 12987–12993 (2010).
[Crossref]

Chowdhury, M. H.

M. H. Chowdhury, S. Chakraborty, J. R. Lakowicz, and K. Ray, “Feasibility of using bimetallic plasmonic nanostructures to enhance the intrinsic emission of biomolecules,” J Phys Chem C Nanomater Interfaces 115(34), 16879–16891 (2011).
[Crossref] [PubMed]

M. H. Chowdhury, K. Ray, M. L. Johnson, S. K. Gray, J. Pond, and J. R. Lakowicz, “On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing,” J Phys Chem C Nanomater Interfaces 114(16), 7448–7461 (2010).
[Crossref] [PubMed]

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[Crossref] [PubMed]

Drachev, V. P.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Dragan, A. I.

H. Mishra, B. L. Mali, J. Karolin, A. I. Dragan, and C. D. Geddes, “Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system,” Phys. Chem. Chem. Phys. 15(45), 19538–19544 (2013).
[Crossref] [PubMed]

Eastman, J. W.

J. W. Eastman and E. J. Rosa, “The fluorescence of adenine. The effects of solvent and temperature on the quantum yield,” Photochem. Photobiol. 7(2), 189–201 (1968).
[Crossref] [PubMed]

Ekinci, Y.

S. K. Jha, Y. Ekinci, M. Agio, and J. F. Löffler, “Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: Ultrasensitive, real-time and reproducible detection of TNT,” Analyst (Lond.) 140(16), 5671–5677 (2015).
[Crossref] [PubMed]

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. App. Phys. 104, 083107 (2008).

Etchegoin, P. G.

E. C. LeRu, P. G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, “Mechanisms of spectral profile modification in surface-enhanced fluorescence,” J. Phys. Chem. C 111(44), 16076–16079 (2007).
[Crossref]

Feldmann, J.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Félidj, N.

E. C. LeRu, P. G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, “Mechanisms of spectral profile modification in surface-enhanced fluorescence,” J. Phys. Chem. C 111(44), 16076–16079 (2007).
[Crossref]

Foerster, B.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Fort, E.

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[Crossref]

Geddes, C. D.

H. Mishra, B. L. Mali, J. Karolin, A. I. Dragan, and C. D. Geddes, “Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system,” Phys. Chem. Chem. Phys. 15(45), 19538–19544 (2013).
[Crossref] [PubMed]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Gómez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Grand, J.

E. C. LeRu, P. G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, “Mechanisms of spectral profile modification in surface-enhanced fluorescence,” J. Phys. Chem. C 111(44), 16076–16079 (2007).
[Crossref]

Gray, S. K.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

M. H. Chowdhury, K. Ray, M. L. Johnson, S. K. Gray, J. Pond, and J. R. Lakowicz, “On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing,” J Phys Chem C Nanomater Interfaces 114(16), 7448–7461 (2010).
[Crossref] [PubMed]

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

Gresillon, S.

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[Crossref]

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Gustavsson, T.

D. Onidas, D. Markovitsi, S. Marguet, A. Sharonov, and T. Gustavsson, “Fluorescence properties of DNA nucleosides and nucleotides: A refined steady-state and femtosecond investigation,” J. Phys. Chem. B 106(43), 11367–11374 (2002).
[Crossref]

Gwo, S.

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-Y. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114(30), 12987–12993 (2010).
[Crossref]

Halas, N. J.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

He, C.-L.

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-Y. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114(30), 12987–12993 (2010).
[Crossref]

Hendry, E.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized suface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B 79(7), 073412 (2009).
[Crossref]

Hicks, E. M.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finitesized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[Crossref]

Inami, W.

Jha, S. K.

S. K. Jha, Y. Ekinci, M. Agio, and J. F. Löffler, “Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: Ultrasensitive, real-time and reproducible detection of TNT,” Analyst (Lond.) 140(16), 5671–5677 (2015).
[Crossref] [PubMed]

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Jiao, X.

Johnson, M. L.

M. H. Chowdhury, K. Ray, M. L. Johnson, S. K. Gray, J. Pond, and J. R. Lakowicz, “On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing,” J Phys Chem C Nanomater Interfaces 114(16), 7448–7461 (2010).
[Crossref] [PubMed]

Käll, M.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Karolin, J.

H. Mishra, B. L. Mali, J. Karolin, A. I. Dragan, and C. D. Geddes, “Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system,” Phys. Chem. Chem. Phys. 15(45), 19538–19544 (2013).
[Crossref] [PubMed]

Kasemo, B.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Kawata, Y.

Kikawada, M.

Kildishev, A. V.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

King, N. S.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Klar, T. A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Knight, M. W.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Knoester, J.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Kohler, F.

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[Crossref] [PubMed]

Kürzinger, K.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Lakowicz, J. R.

N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
[Crossref] [PubMed]

M. H. Chowdhury, S. Chakraborty, J. R. Lakowicz, and K. Ray, “Feasibility of using bimetallic plasmonic nanostructures to enhance the intrinsic emission of biomolecules,” J Phys Chem C Nanomater Interfaces 115(34), 16879–16891 (2011).
[Crossref] [PubMed]

M. H. Chowdhury, K. Ray, M. L. Johnson, S. K. Gray, J. Pond, and J. R. Lakowicz, “On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing,” J Phys Chem C Nanomater Interfaces 114(16), 7448–7461 (2010).
[Crossref] [PubMed]

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[Crossref] [PubMed]

Lee, H.-M.

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-Y. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114(30), 12987–12993 (2010).
[Crossref]

LeRu, E. C.

E. C. LeRu, P. G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, “Mechanisms of spectral profile modification in surface-enhanced fluorescence,” J. Phys. Chem. C 111(44), 16076–16079 (2007).
[Crossref]

Lévi, G.

E. C. LeRu, P. G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, “Mechanisms of spectral profile modification in surface-enhanced fluorescence,” J. Phys. Chem. C 111(44), 16076–16079 (2007).
[Crossref]

Li, Q.

Q. Li and S. Seeger, “Label-free detection of protein interactions using deep UV fluorescence lifetime microscopy,” Anal. Biochem. 367(1), 104–110 (2007).
[Crossref] [PubMed]

Liang, Y.

L. Zhao, T. Ming, H. Chen, Y. Liang, and J. Wang, “Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods,” Nanoscale 3(9), 3849–3859 (2011).
[Crossref] [PubMed]

Link, S.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Liu, L.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Liu, Z.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Löffler, J. F.

S. K. Jha, Y. Ekinci, M. Agio, and J. F. Löffler, “Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: Ultrasensitive, real-time and reproducible detection of TNT,” Analyst (Lond.) 140(16), 5671–5677 (2015).
[Crossref] [PubMed]

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. App. Phys. 104, 083107 (2008).

Ludwig, M.

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[Crossref] [PubMed]

Mahajan, S.

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

Mahdavi, F.

F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics 5(2), 169–174 (2010).
[Crossref]

Mali, B. L.

H. Mishra, B. L. Mali, J. Karolin, A. I. Dragan, and C. D. Geddes, “Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system,” Phys. Chem. Chem. Phys. 15(45), 19538–19544 (2013).
[Crossref] [PubMed]

Malyshev, A. V.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Malyshev, V. A.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Manjavacas, A.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Marguet, S.

D. Onidas, D. Markovitsi, S. Marguet, A. Sharonov, and T. Gustavsson, “Fluorescence properties of DNA nucleosides and nucleotides: A refined steady-state and femtosecond investigation,” J. Phys. Chem. B 106(43), 11367–11374 (2002).
[Crossref]

Markovitsi, D.

D. Onidas, D. Markovitsi, S. Marguet, A. Sharonov, and T. Gustavsson, “Fluorescence properties of DNA nucleosides and nucleotides: A refined steady-state and femtosecond investigation,” J. Phys. Chem. B 106(43), 11367–11374 (2002).
[Crossref]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

McMahon, J. M.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Ming, T.

L. Zhao, T. Ming, H. Chen, Y. Liang, and J. Wang, “Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods,” Nanoscale 3(9), 3849–3859 (2011).
[Crossref] [PubMed]

Mishra, H.

H. Mishra, B. L. Mali, J. Karolin, A. I. Dragan, and C. D. Geddes, “Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system,” Phys. Chem. Chem. Phys. 15(45), 19538–19544 (2013).
[Crossref] [PubMed]

Munárriz, J.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Nichtl, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Nordlander, P.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Olson, J.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Onidas, D.

D. Onidas, D. Markovitsi, S. Marguet, A. Sharonov, and T. Gustavsson, “Fluorescence properties of DNA nucleosides and nucleotides: A refined steady-state and femtosecond investigation,” J. Phys. Chem. B 106(43), 11367–11374 (2002).
[Crossref]

Ono, A.

Parsons, J.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized suface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B 79(7), 073412 (2009).
[Crossref]

Pedersen, R. H.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Perkins, E.

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

Pond, J.

M. H. Chowdhury, K. Ray, M. L. Johnson, S. K. Gray, J. Pond, and J. R. Lakowicz, “On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing,” J Phys Chem C Nanomater Interfaces 114(16), 7448–7461 (2010).
[Crossref] [PubMed]

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Ray, K.

N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
[Crossref] [PubMed]

M. H. Chowdhury, S. Chakraborty, J. R. Lakowicz, and K. Ray, “Feasibility of using bimetallic plasmonic nanostructures to enhance the intrinsic emission of biomolecules,” J Phys Chem C Nanomater Interfaces 115(34), 16879–16891 (2011).
[Crossref] [PubMed]

M. H. Chowdhury, K. Ray, M. L. Johnson, S. K. Gray, J. Pond, and J. R. Lakowicz, “On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing,” J Phys Chem C Nanomater Interfaces 114(16), 7448–7461 (2010).
[Crossref] [PubMed]

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[Crossref] [PubMed]

Ringler, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Rosa, E. J.

J. W. Eastman and E. J. Rosa, “The fluorescence of adenine. The effects of solvent and temperature on the quantum yield,” Photochem. Photobiol. 7(2), 189–201 (1968).
[Crossref] [PubMed]

Sambles, J. R.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized suface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B 79(7), 073412 (2009).
[Crossref]

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Schatz, G. C.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Schulze, P.

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[Crossref] [PubMed]

Schwemer, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Seeger, S.

Q. Li and S. Seeger, “Label-free detection of protein interactions using deep UV fluorescence lifetime microscopy,” Anal. Biochem. 367(1), 104–110 (2007).
[Crossref] [PubMed]

Shalaev, V. M.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Sharonov, A.

D. Onidas, D. Markovitsi, S. Marguet, A. Sharonov, and T. Gustavsson, “Fluorescence properties of DNA nucleosides and nucleotides: A refined steady-state and femtosecond investigation,” J. Phys. Chem. B 106(43), 11367–11374 (2002).
[Crossref]

Sigle, D. O.

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

Solak, H. H.

Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. App. Phys. 104, 083107 (2008).

Spears, K. G.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finitesized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[Crossref]

Sung, J.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finitesized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[Crossref]

Van Duyne, R. P.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finitesized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[Crossref]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Wang, J.

L. Zhao, T. Ming, H. Chen, Y. Liang, and J. Wang, “Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods,” Nanoscale 3(9), 3849–3859 (2011).
[Crossref] [PubMed]

Wu, C.-Y.

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-Y. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114(30), 12987–12993 (2010).
[Crossref]

Wunderlich, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Yuan, H.-K.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

Zhao, L.

L. Zhao, T. Ming, H. Chen, Y. Liang, and J. Wang, “Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods,” Nanoscale 3(9), 3849–3859 (2011).
[Crossref] [PubMed]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Adv. Mater. (1)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Anal. Biochem. (1)

Q. Li and S. Seeger, “Label-free detection of protein interactions using deep UV fluorescence lifetime microscopy,” Anal. Biochem. 367(1), 104–110 (2007).
[Crossref] [PubMed]

Anal. Chem. (3)

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[Crossref] [PubMed]

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[Crossref] [PubMed]

Analyst (Lond.) (1)

S. K. Jha, Y. Ekinci, M. Agio, and J. F. Löffler, “Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: Ultrasensitive, real-time and reproducible detection of TNT,” Analyst (Lond.) 140(16), 5671–5677 (2015).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

P. R. Callis, “Electronic states and luminescence of nucleic acid systems,” Annu. Rev. Phys. Chem. 34(1), 329–357 (1983).
[Crossref]

Appl. Phys. Lett. (1)

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[Crossref]

J Phys Chem C Nanomater Interfaces (3)

M. H. Chowdhury, K. Ray, M. L. Johnson, S. K. Gray, J. Pond, and J. R. Lakowicz, “On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing,” J Phys Chem C Nanomater Interfaces 114(16), 7448–7461 (2010).
[Crossref] [PubMed]

M. H. Chowdhury, S. Chakraborty, J. R. Lakowicz, and K. Ray, “Feasibility of using bimetallic plasmonic nanostructures to enhance the intrinsic emission of biomolecules,” J Phys Chem C Nanomater Interfaces 115(34), 16879–16891 (2011).
[Crossref] [PubMed]

N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

J. App. Phys. (1)

Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. App. Phys. 104, 083107 (2008).

J. Phys. Chem. B (2)

D. Onidas, D. Markovitsi, S. Marguet, A. Sharonov, and T. Gustavsson, “Fluorescence properties of DNA nucleosides and nucleotides: A refined steady-state and femtosecond investigation,” J. Phys. Chem. B 106(43), 11367–11374 (2002).
[Crossref]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle Optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

J. Phys. Chem. C (3)

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finitesized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[Crossref]

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-Y. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114(30), 12987–12993 (2010).
[Crossref]

E. C. LeRu, P. G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, “Mechanisms of spectral profile modification in surface-enhanced fluorescence,” J. Phys. Chem. C 111(44), 16076–16079 (2007).
[Crossref]

J. Phys. Chem. Lett. (1)

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[Crossref]

Nano Lett. (2)

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Nanoscale (1)

L. Zhao, T. Ming, H. Chen, Y. Liang, and J. Wang, “Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods,” Nanoscale 3(9), 3849–3859 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Photochem. Photobiol. (1)

J. W. Eastman and E. J. Rosa, “The fluorescence of adenine. The effects of solvent and temperature on the quantum yield,” Photochem. Photobiol. 7(2), 189–201 (1968).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (2)

H. Mishra, B. L. Mali, J. Karolin, A. I. Dragan, and C. D. Geddes, “Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system,” Phys. Chem. Chem. Phys. 15(45), 19538–19544 (2013).
[Crossref] [PubMed]

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Phys. Rev. B (1)

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized suface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B 79(7), 073412 (2009).
[Crossref]

Phys. Rev. Lett. (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Plasmonics (1)

F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics 5(2), 169–174 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Other (6)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy (Elsevier, 2009).

C. D. Geddes, ed., Metal-Enhanced Fluorescence (John Wiley & Sons, 2010).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2001).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SEM images of the NP arrays fabricated using EBL process. Low-magnification (a) and high-magnification (b, c) SEM images of Al NP arrays. The block-wise arrangement of the NP arrays with 5 × 5 matrix of such arrays (partly shown in (a)) are designed on the substrate. In a row, i.e. from left to right, the NP diameters increase in steps of 25 nm. Along the column the period increases in steps of 25 nm. We note that the field in the first column of the lower row did not yield a uniform array of NPs due to the fabrication process, and such fields are omitted in further investigations.
Fig. 2
Fig. 2 Effect of NP diameter (d) on the LSPR modes. Extinction spectra of Al NP arrays with the periods (a) 200 nm and (b) 250 nm, and various particle diameters.
Fig. 3
Fig. 3 Effect of NP period (P) on the LSPR modes. Extinction spectra of Al NP arrays with the diameters (a) 75 nm and (b) 100 nm, and various particle periodicities.
Fig. 4
Fig. 4 (a) Coffee-ring pattern formed after drop-coating of adenine solution on the substrate. (b) Fluorescence spectra of adenine drop-coated on a bare area on the quartz slide. (c) MEF spectra of adenine deposited on an Al NP array. (d) Comparison of the mean intensities of the florescence and MEF spectra. The spectra were acquired after drop-coating the sample with 0.05 mM adenine. The NP array has a periodicity of P = 225 nm, particle diameter of d = 142 nm and the particle height of h = 70 nm. A relative intensity enhancement of ~80 is observed.
Fig. 5
Fig. 5 MEF spectral dependence on particle parameters. The values of period (P) and diameter (d) are indicated in each panel. In (a) and (b) the period remains constant while the particle diameter is varied.
Fig. 6
Fig. 6 MEF spectral dependence on particle parameters. In both (a) and (b) the period increases in steps of 25 nm, while the diameter does not change significantly.
Fig. 7
Fig. 7 Comparison of LSPR and fluorescence spectra of adenine deposited on NP arrays of various periods. In the top row the representative SEM images of the arrays are presented. A gradual increase in interparticle separation is clearly visible from these images. The scale bar in each panel is 500 nm. The middle and bottom rows show, respectively, the extinction spectra of the arrays and MEF spectra of adenine acquired from them. A gradual red-shift of the plasmon resonance peaks in the extinction spectra with increasing particle periodicity is seen. Significant changes in the MEF spectra result from the plasmonic coupling of the fluorophore with the metal.

Metrics