Abstract

Super-resolution microscopy by microspheres emerged as a simple and broadband imaging technique; however, the mechanisms of imaging are debated in the literature. Furthermore, the resolution values were estimated based on semi-quantitative criteria. The primary goals of this work are threefold: i) to quantify the spatial resolution provided by this method, ii) to compare the resolution of nanoplasmonic structures formed by different metals, and iii) to understand the imaging provided by microfibers. To this end, arrays of Au and Al nanoplasmonic dimers with very similar geometry were imaged using confocal laser scanning microscopy at λ = 405 nm through high-index (n~1.9-2.2) liquid-immersed BaTiO3 microspheres and through etched silica microfibers. We developed a treatment of super-resolved images in label-free microscopy based on using point-spread functions with subdiffraction-limited widths. It is applicable to objects with arbitrary shapes and can be viewed as an integral form of the super-resolution quantification widely accepted in fluorescent microscopy. In the case of imaging through microspheres, the resolution ~λ/6-λ/7 is demonstrated for Au and Al nanoplasmonic arrays. In the case of imaging through microfibers, the resolution ~λ/6 with magnification M~2.1 is demonstrated in the direction perpendicular to the fiber with hundreds of times larger field-of-view in comparison to microspheres.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of the photonic nanojet of microspheres on microsphere imaging

Songlin Yang, Fengge Wang, Yong-hong Ye, Yang Xia, Yun Deng, Jianguo Wang, and Yurong Cao
Opt. Express 25(22) 27551-27558 (2017)

Unusual imaging properties of superresolution microspheres

Pin-Yi Li, Yang Tsao, Yun-Ju Liu, Zong-Xing Lou, Wei-Li Lee, Shi-Wei Chu, and Chih-Wei Chang
Opt. Express 24(15) 16479-16486 (2016)

Immersed transparent microsphere magnifying sub-diffraction-limited objects

Seoungjun Lee, Lin Li, Zengbo Wang, Wei Guo, Yinzhou Yan, and Tao Wang
Appl. Opt. 52(30) 7265-7270 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref] [PubMed]
  2. X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
    [Crossref]
  3. V. N. Astratov and A. Darafsheh, “Methods and systems for super-resolution optical imaging using high-index of refraction microspheres and microcylinders,” United States Patent Application 2014/0355108 A1 published on December 4, 2014, related to US provisional application 61/656,710 filed on June 7, 2012. http://www.freepatentsonline.com/20140355108.pdf
  4. A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
    [Crossref]
  5. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
    [Crossref]
  6. H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
    [Crossref] [PubMed]
  7. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
    [Crossref]
  8. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref] [PubMed]
  9. W. Shu-Ying, Z. Hai-Jun, and Z. Dong-Xian, “Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses,” Wuli Xuebao 62, 034207 (2013).
  10. L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
    [Crossref] [PubMed]
  11. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, Jr., A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of IEEE Aerospace and Electronics Conference–NAECON (IEEE, 2014), pp. 50–52. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7045775
  12. K. W. Allen, “Waveguide, photodetector, and imaging applications of microspherical photonics,” Ph.D. dissertation (University of North Carolina at Charlotte, 2014), Chapter 4: Super-Resolution Imaging through Arrays of High-Index Spheres Embedded in Transparent Matrices, pp. 98–122. http://gradworks.umi.com/36/85/3685782.html
  13. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
    [Crossref]
  14. C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
    [Crossref]
  15. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anatom. 9(1), 413–418 (1873).
    [Crossref]
  16. W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
    [Crossref]
  17. Lord Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).
    [Crossref]
  18. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
    [Crossref]
  19. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
    [Crossref]
  20. Y. Duan, G. Barbastathis, and B. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38(16), 2988–2990 (2013).
    [Crossref] [PubMed]
  21. V. M. Sundaram and S.-B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Appl. Phys. Lett. 105(20), 204102 (2014).
    [Crossref]
  22. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
    [Crossref] [PubMed]
  23. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  24. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom, (2010), http://spie.org/x39280.xml .
    [Crossref]
  25. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
    [Crossref] [PubMed]
  26. W. Wu, A. Katsnelson, O. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
    [Crossref]
  27. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007).
    [Crossref] [PubMed]
  28. S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
    [Crossref]
  29. A. Darafsheh and V. N. Astratov, “Periodically focused modes in chains of dielectric spheres,” Appl. Phys. Lett. 100(6), 061123 (2012).
    [Crossref] [PubMed]
  30. K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: Focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
    [Crossref]
  31. A. Darafsheh, N. Mojaverian, N. I. Limberopoulos, K. W. Allen, A. Lupu, and V. N. Astratov, “Formation of polarized beams in chains of dielectric spheres and cylinders,” Opt. Lett. 38(20), 4208–4211 (2013).
    [Crossref] [PubMed]
  32. A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
    [Crossref]
  33. A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
    [Crossref]
  34. A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
    [Crossref]
  35. C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express 20(19), 20827–20834 (2012).
    [Crossref] [PubMed]
  36. C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
    [Crossref]
  37. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
    [Crossref] [PubMed]
  38. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B 29(4), 758–762 (2012).
    [Crossref]
  39. J. W. Goodman, Introduction to Fourier Optics, 2nd Ed. (The McGraw-Hill Companies, 1996).
  40. A. J. den Dekker and A. van den Bos, “Resolution: A survey,” J. Opt. Soc. Am. A 14(3), 547–557 (1997).
    [Crossref]
  41. X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
    [Crossref]
  42. A. Darafsheh, Y. Li, and V. N. Astratov, “Super-resolution microscopy by dielectric microcylinders,” in Proceedings of IEEE 15th International Conference on Transparent Optical Networks–ICTON (IEEE, 2013), Paper No. Tu.P.38.
  43. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  44. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
    [Crossref] [PubMed]
  45. G. Pellegrini, G. Mattei, and P. Mazzoldi, “Light extraction with dielectric nanoantenna arrays,” ACS Nano 3(9), 2715–2721 (2009).
    [Crossref] [PubMed]
  46. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
    [Crossref] [PubMed]
  47. M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas-a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
    [Crossref] [PubMed]
  48. S. Weisenburger and V. Sandoghdar, “Light microscopy: an ongoing contemporary revolution,” Contemp. Phys. 56(2), 123–143 (2015).
    [Crossref]
  49. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
    [Crossref]
  50. I. I. Smolyaninov, C. C. Davis, J. Elliott, and A. V. Zayats, “Resolution enhancement of a surface immersion microscope near the plasmon resonance,” Opt. Lett. 30(4), 382–384 (2005).
    [Crossref] [PubMed]
  51. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
    [Crossref] [PubMed]
  52. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  53. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  54. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
    [Crossref] [PubMed]
  55. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  56. A. Darafsheh, “Optical super-resolution and periodical focusing effects by dielectric miscrospheres,” Ph.D. dissertation (University of North Carolina at Charlotte, 2013), p. 171.
  57. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, Jr., A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-Resolution by Microspheres and Fibers – Myth or Reality?”, in Proceedings of IEEE 17th International Conference on Transparent Optical Networks–ICTON (IEEE, 2015), Paper No. We.C6.1.
    [Crossref]
  58. K. W. Allen, V. Liberman, M. Rothschild, N. I. Limberopoulos, D. E. Walker, Jr., A. M. Urbas, and V. N. Astratov, “Deep-UV microsphere-assisted ultramicroscopy,” in Proceedings of IEEE 17th International Conference on Transparent Optical Networks–ICTON (IEEE, 2015), Paper No. We.P.26.

2015 (2)

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

S. Weisenburger and V. Sandoghdar, “Light microscopy: an ongoing contemporary revolution,” Contemp. Phys. 56(2), 123–143 (2015).
[Crossref]

2014 (5)

V. M. Sundaram and S.-B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Appl. Phys. Lett. 105(20), 204102 (2014).
[Crossref]

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: Focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

2013 (9)

A. Darafsheh, N. Mojaverian, N. I. Limberopoulos, K. W. Allen, A. Lupu, and V. N. Astratov, “Formation of polarized beams in chains of dielectric spheres and cylinders,” Opt. Lett. 38(20), 4208–4211 (2013).
[Crossref] [PubMed]

Y. Duan, G. Barbastathis, and B. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38(16), 2988–2990 (2013).
[Crossref] [PubMed]

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
[Crossref]

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
[Crossref]

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

W. Shu-Ying, Z. Hai-Jun, and Z. Dong-Xian, “Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses,” Wuli Xuebao 62, 034207 (2013).

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

2012 (6)

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express 20(19), 20827–20834 (2012).
[Crossref] [PubMed]

A. Darafsheh and V. N. Astratov, “Periodically focused modes in chains of dielectric spheres,” Appl. Phys. Lett. 100(6), 061123 (2012).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B 29(4), 758–762 (2012).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas-a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
[Crossref] [PubMed]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

2011 (3)

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

2010 (1)

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

2009 (1)

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Light extraction with dielectric nanoantenna arrays,” ACS Nano 3(9), 2715–2721 (2009).
[Crossref] [PubMed]

2008 (2)

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[Crossref]

X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
[Crossref] [PubMed]

2007 (5)

W. Wu, A. Katsnelson, O. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007).
[Crossref] [PubMed]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
[Crossref] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

2006 (2)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

2003 (1)

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

2002 (1)

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[Crossref]

2000 (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

1997 (1)

1994 (1)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

1990 (2)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1927 (1)

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
[Crossref]

1916 (1)

C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
[Crossref]

1879 (1)

Lord Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).
[Crossref]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anatom. 9(1), 413–418 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anatom. 9(1), 413–418 (1873).
[Crossref]

Abolmaali, F.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: Focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

Aizpurua, J.

Alekseyev, L. V.

Allen, K. W.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: Focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

A. Darafsheh, N. Mojaverian, N. I. Limberopoulos, K. W. Allen, A. Lupu, and V. N. Astratov, “Formation of polarized beams in chains of dielectric spheres and cylinders,” Opt. Lett. 38(20), 4208–4211 (2013).
[Crossref] [PubMed]

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

Astratov, V. N.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: Focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

A. Darafsheh, N. Mojaverian, N. I. Limberopoulos, K. W. Allen, A. Lupu, and V. N. Astratov, “Formation of polarized beams in chains of dielectric spheres and cylinders,” Opt. Lett. 38(20), 4208–4211 (2013).
[Crossref] [PubMed]

A. Darafsheh and V. N. Astratov, “Periodically focused modes in chains of dielectric spheres,” Appl. Phys. Lett. 100(6), 061123 (2012).
[Crossref] [PubMed]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[Crossref]

A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007).
[Crossref] [PubMed]

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[Crossref]

Auwerx, J.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Backman, V.

Barbastathis, G.

Bernussi, A. A.

Bonod, N.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

Bristow, A. D.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[Crossref]

Chad, J. E.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

Croucher, M. P.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

Cui, X.

Culshaw, I. S.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[Crossref]

Dal Negro, L.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Dallaporta, H.

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
[Crossref]

Darafsheh, A.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: Focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

A. Darafsheh, N. Mojaverian, N. I. Limberopoulos, K. W. Allen, A. Lupu, and V. N. Astratov, “Formation of polarized beams in chains of dielectric spheres and cylinders,” Opt. Lett. 38(20), 4208–4211 (2013).
[Crossref] [PubMed]

A. Darafsheh and V. N. Astratov, “Periodically focused modes in chains of dielectric spheres,” Appl. Phys. Lett. 100(6), 061123 (2012).
[Crossref] [PubMed]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Davis, C. C.

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

den Dekker, A. J.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Dennis, M. R.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Derov, J. S.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Devilez, A.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

Dominguez, D.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
[Crossref]

Dong-Xian, Z.

W. Shu-Ying, Z. Hai-Jun, and Z. Dong-Xian, “Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses,” Wuli Xuebao 62, 034207 (2013).

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

Duan, Y.

Eggeling, C.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

Elliott, J.

Erni, D.

Esteban, R.

Farahi, N.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Gehring, G. A.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

Geints, Y. E.

Gijs, M. A. M.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Gourshetty, S. C.

Grave de Peralta, L.

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Hafner, C.

Hai-Jun, Z.

W. Shu-Ying, Z. Hai-Jun, and Z. Dong-Xian, “Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses,” Wuli Xuebao 62, 034207 (2013).

Hao, X.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Heifetz, A.

Hell, S. W.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Hopkinson, M.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

Houston, W. V.

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
[Crossref]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[Crossref] [PubMed]

Jacob, Z.

Jahn, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

Kapitonov, A. M.

Kasemo, B.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Katsnelson, A.

W. Wu, A. Katsnelson, O. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Keller, J.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Kong, S.-C.

Krauss, T. F.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[Crossref]

Krivitsky, L. A.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

Ku, Y.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

Kuang, C.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Langhammer, C.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lee, S.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Li, H.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

Li, L.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Li, Y.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Liberman, V.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

Limberopoulos, N. I.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: Focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

A. Darafsheh, N. Mojaverian, N. I. Limberopoulos, K. W. Allen, A. Lupu, and V. N. Astratov, “Formation of polarized beams in chains of dielectric spheres and cylinders,” Opt. Lett. 38(20), 4208–4211 (2013).
[Crossref] [PubMed]

Lindberg, J.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Liu, X.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lord Rayleigh,

Lord Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).
[Crossref]

Lührmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

Luk’yanchuk, B.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Lupu, A.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: Focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

A. Darafsheh, N. Mojaverian, N. I. Limberopoulos, K. W. Allen, A. Lupu, and V. N. Astratov, “Formation of polarized beams in chains of dielectric spheres and cylinders,” Opt. Lett. 38(20), 4208–4211 (2013).
[Crossref] [PubMed]

Mackowski, S.

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Mattei, G.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Light extraction with dielectric nanoantenna arrays,” ACS Nano 3(9), 2715–2721 (2009).
[Crossref] [PubMed]

Mazzoldi, P.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Light extraction with dielectric nanoantenna arrays,” ACS Nano 3(9), 2715–2721 (2009).
[Crossref] [PubMed]

Medda, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

Memis, O.

W. Wu, A. Katsnelson, O. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Mohseni, H.

W. Wu, A. Katsnelson, O. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Mojaverian, N.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: Focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

A. Darafsheh, N. Mojaverian, N. I. Limberopoulos, K. W. Allen, A. Lupu, and V. N. Astratov, “Formation of polarized beams in chains of dielectric spheres and cylinders,” Opt. Lett. 38(20), 4208–4211 (2013).
[Crossref] [PubMed]

Moullan, N.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Narimanov, E.

Nguyen, T.

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
[Crossref]

Nikitin, A. G.

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
[Crossref]

Panina, E. K.

Pellegrini, G.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Light extraction with dielectric nanoantenna arrays,” ACS Nano 3(9), 2715–2721 (2009).
[Crossref] [PubMed]

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Regan, C. J.

Rizzoli, S. O.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

Rodriguez, R.

Rogers, E. T. F.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Roy, T.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Sáenz, J. J.

Sandoghdar, V.

S. Weisenburger and V. Sandoghdar, “Light microscopy: an ongoing contemporary revolution,” Contemp. Phys. 56(2), 123–143 (2015).
[Crossref]

Savo, S.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Schmidt, M. K.

Shimada, R.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[Crossref]

Shu-Ying, W.

W. Shu-Ying, Z. Hai-Jun, and Z. Dong-Xian, “Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses,” Wuli Xuebao 62, 034207 (2013).

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Simpson, J. J.

Skolnick, M. S.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[Crossref]

Smolyaninov, I. I.

Sparrow, C. M.

C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
[Crossref]

Stout, B.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Suárez-Lacalle, I.

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Sundaram, V. M.

V. M. Sundaram and S.-B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Appl. Phys. Lett. 105(20), 204102 (2014).
[Crossref]

Taflove, A.

Tahraoui, A.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[Crossref]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Tong, L.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

Urbas, A. M.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

van den Bos, A.

Walker, D. E.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Wang, J. J.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

Wang, T.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Wang, Z.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Wasserman, D.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weisenburger, S.

S. Weisenburger and V. Sandoghdar, “Light microscopy: an ongoing contemporary revolution,” Contemp. Phys. 56(2), 123–143 (2015).
[Crossref]

Wen, S.-B.

V. M. Sundaram and S.-B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Appl. Phys. Lett. 105(20), 204102 (2014).
[Crossref]

Whittaker, D. M.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[Crossref]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Wu, W.

W. Wu, A. Katsnelson, O. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Yan, Y.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Yang, H.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Yang, S.

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[Crossref]

Zäch, M.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Zayats, A. V.

Zemlyanov, A. A.

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Zhang, B.

Zhang, H.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zheludev, N. I.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Zoric, I.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

ACS Nano (4)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Light extraction with dielectric nanoantenna arrays,” ACS Nano 3(9), 2715–2721 (2009).
[Crossref] [PubMed]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

Ann. Phys. (1)

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. 527(7-8), 513–522 (2015).
[Crossref]

Appl. Phys. Lett. (11)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

V. M. Sundaram and S.-B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Appl. Phys. Lett. 105(20), 204102 (2014).
[Crossref]

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[Crossref]

A. Darafsheh and V. N. Astratov, “Periodically focused modes in chains of dielectric spheres,” Appl. Phys. Lett. 100(6), 061123 (2012).
[Crossref] [PubMed]

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: Focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies,” Appl. Phys. Lett. 102(22), 221116 (2013).
[Crossref]

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

Arch. Mikroskop. Anatom. (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anatom. 9(1), 413–418 (1873).
[Crossref]

Astrophys. J. (1)

C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
[Crossref]

Contemp. Phys. (1)

S. Weisenburger and V. Sandoghdar, “Light microscopy: an ongoing contemporary revolution,” Contemp. Phys. 56(2), 123–143 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[Crossref]

J. Appl. Phys. (1)

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
[Crossref]

J. Chem. Phys. (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Nanotechnology (1)

W. Wu, A. Katsnelson, O. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Philos. Mag. (1)

Lord Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).
[Crossref]

Phys. Rev. (1)

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
[Crossref]

Phys. Rev. B (1)

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period AlxGa1−xAs photonic crystal waveguides,” Phys. Rev. B 68(3), 033303 (2003).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

Science (3)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Small (1)

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Wuli Xuebao (1)

W. Shu-Ying, Z. Hai-Jun, and Z. Dong-Xian, “Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses,” Wuli Xuebao 62, 034207 (2013).

Other (9)

V. N. Astratov and A. Darafsheh, “Methods and systems for super-resolution optical imaging using high-index of refraction microspheres and microcylinders,” United States Patent Application 2014/0355108 A1 published on December 4, 2014, related to US provisional application 61/656,710 filed on June 7, 2012. http://www.freepatentsonline.com/20140355108.pdf

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, Jr., A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of IEEE Aerospace and Electronics Conference–NAECON (IEEE, 2014), pp. 50–52. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7045775

K. W. Allen, “Waveguide, photodetector, and imaging applications of microspherical photonics,” Ph.D. dissertation (University of North Carolina at Charlotte, 2014), Chapter 4: Super-Resolution Imaging through Arrays of High-Index Spheres Embedded in Transparent Matrices, pp. 98–122. http://gradworks.umi.com/36/85/3685782.html

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom, (2010), http://spie.org/x39280.xml .
[Crossref]

A. Darafsheh, “Optical super-resolution and periodical focusing effects by dielectric miscrospheres,” Ph.D. dissertation (University of North Carolina at Charlotte, 2013), p. 171.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, Jr., A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-Resolution by Microspheres and Fibers – Myth or Reality?”, in Proceedings of IEEE 17th International Conference on Transparent Optical Networks–ICTON (IEEE, 2015), Paper No. We.C6.1.
[Crossref]

K. W. Allen, V. Liberman, M. Rothschild, N. I. Limberopoulos, D. E. Walker, Jr., A. M. Urbas, and V. N. Astratov, “Deep-UV microsphere-assisted ultramicroscopy,” in Proceedings of IEEE 17th International Conference on Transparent Optical Networks–ICTON (IEEE, 2015), Paper No. We.P.26.

J. W. Goodman, Introduction to Fourier Optics, 2nd Ed. (The McGraw-Hill Companies, 1996).

A. Darafsheh, Y. Li, and V. N. Astratov, “Super-resolution microscopy by dielectric microcylinders,” in Proceedings of IEEE 15th International Conference on Transparent Optical Networks–ICTON (IEEE, 2013), Paper No. Tu.P.38.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of (a) the microsphere-assisted imaging technique and (b) the experimental setup; (c) scanning electron microscope image of an array of gold dimers composed of ~175 nm diameter nanocylinders with an edge-to-edge separation of ~25 nm; (d) virtual image produced by imaging through a ~6 µm BaTiO3 glass sphere using 20x(NA = 0.6) objective.
Fig. 2
Fig. 2 (a) Sketch illustrating the theoretical model with a 10 μm diameter sphere with n = 1.9 placed in contact with a nanoplasmonic dimer array. The detector (monitor) is located in near-field proximity (20 nm) to the metallic dimers. (b,c) EM maps calculated for Au and Al dimers at λ = 590 nm and 400 nm, respectively. The locations of the dimers are indicated by circles.
Fig. 3
Fig. 3 (a) Object is represented by the Au dimers with D = 110 nm and 40 nm gaps. Insets in (b,d,f) show virtual images obtained through 4.5 µm BaTiO3 microsphere. Image was reconstructed using drawn object (two circles) and PSFs with different FWHMs: (b,c) - 0 (Dirac function), (d,e) - λ/4.8, and (f,g) - λ/7.2. Dashed blue curves represent modeling and red profiles represent experiments.
Fig. 4
Fig. 4 (a,e) SEM images of Au and Al dimers, respectively. The Au dimers are formed by 100 nm nanocylinders with 80 nm edge-to-edge separation. The Al dimers are represented by ellipses with 135 nm major and 100 nm minor axes and 180 nm center-to-center separations. The major axis forms 140° angle with the x-axis. (b,f) Images obtained through 8 μm and 10 μm BaTiO3 microspheres, respectively. (c,g) Images of idealized objects convoluted with 2-D PSF with the λ/6.6 and λ/7.3 widths, respectively. (d, h) Comparison of calculated (blue dashed lines) and measured (red profiles) irradiance profiles through the cross-sections (x-axis) of the Au and Al dimers, respectively.
Fig. 5
Fig. 5 (a) Schematic of chemical etching process; (b) Etched microfiber with Dcyl = 12 µm; (c) SEM image of Au nanoplasmonic dimers with D~100 nm and d~150 nm; (d) Virtual image of a single row of dimers obtained through the microfiber semi-immersed in acetone; (e) Drawn object with the dimensions matching SEM image in (c); (f) Gaussian PSF with the λ/6 and λ/2 widths along x- and y-axis, respectively; (g) Image calculated with the magnification (M = 2.1) along x-axis taken into account (stronger intensity is assumed for two right circles to obtain good fit to the experiment); (h) Irradiance profiles showing agreement with the experiment.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = + O ( u , v ) P S F ( u x M ,   v y M ) d u d v ,

Metrics