Abstract

In recent years, considerable attention has been focused on transformation optics and metamaterial due to their fascinating properties and wide range of promising applications. Concentrator, one of the most well-known applications of transformation optics and metamaterial, is now limited only to a single physical domain. Here we propose and give the experimental demonstration of a bifunctional concentrator that can concentrate both electric and thermal fields to a given region simultaneously while keeping the external fields undistorted. Fan-shaped structure composed of alternating wedges made of two kinds of natural materials is proposed to achieve this goal. Numerical simulation and experimental results show good agreement, indicating the soundness and feasibility of our scheme.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields

Chuwen Lan, Ke Bi, Xiaojian Fu, Bo Li, and Ji Zhou
Opt. Express 24(20) 23072-23080 (2016)

Highly efficient manipulation of Laplace fields in film system with structured bilayer composite

Chuwen Lan, Ming Lei, Ke Bi, Bo Li, and Ji Zhou
Opt. Express 24(26) 29537-29546 (2016)

Bifunctional arbitrarily-shaped cloak for thermal and electric manipulations

Lin Zhang and Yan Shi
Opt. Mater. Express 8(9) 2600-2613 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  2. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  5. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [Crossref] [PubMed]
  7. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
    [Crossref] [PubMed]
  8. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [Crossref] [PubMed]
  9. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
    [Crossref] [PubMed]
  10. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
    [Crossref] [PubMed]
  11. S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
    [Crossref] [PubMed]
  12. M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
    [Crossref] [PubMed]
  13. F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
    [Crossref] [PubMed]
  14. S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24(1), 71–74 (2012).
    [Crossref] [PubMed]
  15. F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
    [Crossref] [PubMed]
  16. T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
    [Crossref] [PubMed]
  17. S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
    [Crossref] [PubMed]
  18. S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
    [Crossref] [PubMed]
  19. R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
    [Crossref] [PubMed]
  20. Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Materials 5(11), e73 (2013).
    [Crossref]
  21. T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
    [Crossref] [PubMed]
  22. H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
    [Crossref] [PubMed]
  23. S. Guenneau and T. M. Puvirajesinghe, “Fick’s second law transformed: one path to cloaking in mass diffusion,” J. R. Soc. Interface 10(83), 20130106 (2013).
    [Crossref] [PubMed]
  24. R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
    [Crossref] [PubMed]
  25. L. Zeng and R. Song, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
    [Crossref] [PubMed]
  26. C. Lan, Y. Yang, J. Zhou, and B. Li, “Electrostatic field invisibility cloak,” arXiv:1412.3294, 2014.
  27. M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
    [Crossref]
  28. Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
    [Crossref] [PubMed]
  29. C. Lan, X. Yu, L. Wu, B. Li, and J. Zhou, “Independent manipulation of electric and thermal fields with bilayer structure,” arXiv:1502.01325, 2015.
  30. C. Lan, B. Li, and J. Zhou, “Simultaneous manipulation of electric and thermal fields via combination of passive and active schemes,” arXiv:1503.06560, 2015.
  31. D. J. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
    [Crossref]
  32. D. Petiteau, S. Guenneau, M. Bellieud, M. Zerrad, and C. Amra, “Spectral effectiveness of engineered thermal cloaks in the frequency regime,” Sci. Rep. 4, 7386 (2014).
    [Crossref] [PubMed]

2014 (7)

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

D. Petiteau, S. Guenneau, M. Bellieud, M. Zerrad, and C. Amra, “Spectral effectiveness of engineered thermal cloaks in the frequency regime,” Sci. Rep. 4, 7386 (2014).
[Crossref] [PubMed]

2013 (4)

L. Zeng and R. Song, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
[Crossref] [PubMed]

S. Guenneau and T. M. Puvirajesinghe, “Fick’s second law transformed: one path to cloaking in mass diffusion,” J. R. Soc. Interface 10(83), 20130106 (2013).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Materials 5(11), e73 (2013).
[Crossref]

2012 (5)

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref] [PubMed]

F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref] [PubMed]

S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24(1), 71–74 (2012).
[Crossref] [PubMed]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref] [PubMed]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[Crossref] [PubMed]

2011 (3)

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

2010 (1)

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

2009 (3)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[Crossref] [PubMed]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

1978 (1)

D. J. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
[Crossref]

Amra, C.

D. Petiteau, S. Guenneau, M. Bellieud, M. Zerrad, and C. Amra, “Spectral effectiveness of engineered thermal cloaks in the frequency regime,” Sci. Rep. 4, 7386 (2014).
[Crossref] [PubMed]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[Crossref] [PubMed]

Bai, X.

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Bellieud, M.

D. Petiteau, S. Guenneau, M. Bellieud, M. Zerrad, and C. Amra, “Spectral effectiveness of engineered thermal cloaks in the frequency regime,” Sci. Rep. 4, 7386 (2014).
[Crossref] [PubMed]

Bergman, D. J.

D. J. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
[Crossref]

Bückmann, T.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

Castaldi, G.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cui, T. J.

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Enoch, S.

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[Crossref] [PubMed]

Fang, N.

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[Crossref] [PubMed]

Farhat, M.

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[Crossref] [PubMed]

Galdi, V.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Gao, D.

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Gao, F.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Gömöry, F.

F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref] [PubMed]

Guenneau, S.

D. Petiteau, S. Guenneau, M. Bellieud, M. Zerrad, and C. Amra, “Spectral effectiveness of engineered thermal cloaks in the frequency regime,” Sci. Rep. 4, 7386 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

S. Guenneau and T. M. Puvirajesinghe, “Fick’s second law transformed: one path to cloaking in mass diffusion,” J. R. Soc. Interface 10(83), 20130106 (2013).
[Crossref] [PubMed]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[Crossref] [PubMed]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[Crossref] [PubMed]

Han, T.

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

He, S.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

He, S. L.

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Materials 5(11), e73 (2013).
[Crossref]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Jiang, W.

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Materials 5(11), e73 (2013).
[Crossref]

Jin, T. Y.

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kadic, M.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

Lan, L.

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Materials 5(11), e73 (2013).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Li, B.

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Liu, X.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Luo, Y.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

Ma, Y.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Ma, Y. G.

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Materials 5(11), e73 (2013).
[Crossref]

Mei, Z. L.

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref] [PubMed]

Moccia, M.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Narayana, S.

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref] [PubMed]

S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24(1), 71–74 (2012).
[Crossref] [PubMed]

Navau, C.

F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Petiteau, D.

D. Petiteau, S. Guenneau, M. Bellieud, M. Zerrad, and C. Amra, “Spectral effectiveness of engineered thermal cloaks in the frequency regime,” Sci. Rep. 4, 7386 (2014).
[Crossref] [PubMed]

Prat-Camps, J.

F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref] [PubMed]

Puvirajesinghe, T. M.

S. Guenneau and T. M. Puvirajesinghe, “Fick’s second law transformed: one path to cloaking in mass diffusion,” J. R. Soc. Interface 10(83), 20130106 (2013).
[Crossref] [PubMed]

Qiu, C. W.

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

Raza, M.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sanchez, A.

F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref] [PubMed]

Sato, Y.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref] [PubMed]

S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24(1), 71–74 (2012).
[Crossref] [PubMed]

Savo, S.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Schittny, R.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shi, X.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Solovyov, M.

F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref] [PubMed]

Song, R.

L. Zeng and R. Song, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
[Crossref] [PubMed]

Souc, J.

F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sun, C.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Sun, F.

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Materials 5(11), e73 (2013).
[Crossref]

Sun, H.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Teng, J.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

Thong, J. T. L.

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Veynante, D.

Wang, Y.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Wegener, M.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Xia, C.

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[Crossref] [PubMed]

Xu, H.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Yang, F.

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref] [PubMed]

Ye, H.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

Yeo, S. P.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

Zeng, L.

L. Zeng and R. Song, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zerrad, M.

D. Petiteau, S. Guenneau, M. Bellieud, M. Zerrad, and C. Amra, “Spectral effectiveness of engineered thermal cloaks in the frequency regime,” Sci. Rep. 4, 7386 (2014).
[Crossref] [PubMed]

Zhang, B.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Zhang, J.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Zhang, S.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

Adv. Mater. (2)

S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24(1), 71–74 (2012).
[Crossref] [PubMed]

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

S. Guenneau and T. M. Puvirajesinghe, “Fick’s second law transformed: one path to cloaking in mass diffusion,” J. R. Soc. Interface 10(83), 20130106 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

NPG Asia Materials (1)

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Materials 5(11), e73 (2013).
[Crossref]

Opt. Express (1)

Phys. Rep. (1)

D. J. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
[Crossref]

Phys. Rev. Lett. (11)

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[Crossref] [PubMed]

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[Crossref] [PubMed]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Sci. Rep. (2)

D. Petiteau, S. Guenneau, M. Bellieud, M. Zerrad, and C. Amra, “Spectral effectiveness of engineered thermal cloaks in the frequency regime,” Sci. Rep. 4, 7386 (2014).
[Crossref] [PubMed]

L. Zeng and R. Song, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
[Crossref] [PubMed]

Science (6)

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Other (3)

C. Lan, Y. Yang, J. Zhou, and B. Li, “Electrostatic field invisibility cloak,” arXiv:1412.3294, 2014.

C. Lan, X. Yu, L. Wu, B. Li, and J. Zhou, “Independent manipulation of electric and thermal fields with bilayer structure,” arXiv:1502.01325, 2015.

C. Lan, B. Li, and J. Zhou, “Simultaneous manipulation of electric and thermal fields via combination of passive and active schemes,” arXiv:1503.06560, 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The principle for bifunctional concentrator: a) The corresponding physical model. The space is divided into three parts: I ( r < a ), II ( a < r < b ) and III ( r > b ). The thermal conductivity and electric conductivity of background material are κ0 and σ 0 , while the ones for the concentrator shell are κ 1 and σ 1 , respectively. b) The normalized thermal flux density distribution. The black lines represent thermal flux density vectors. c) The normalized electric current density distribution. The white lines represent current density vectors.
Fig. 2
Fig. 2 (a) The schematic illustration for practical realization of bifunctional concentrator. The concentrator shell is composed of alternating 18 wedges made of material A (ABS) and 18 wedges made of material B (aluminum). (b) The geometrical parameters: a = 6 mm, b = 30 mm. (c)The photograph of fabricated sample.
Fig. 3
Fig. 3 Thermal flux distribution for different values: (a) κ r = κ 0 , (b) κ r =2 κ 0 , (c) κ r =3 κ 0 ,(d) κ r =4 κ 0 , (e) κ r =5 κ 0 (f) κ r =6 κ 0 (g) κ r =7 κ 0 (h) κ r =8 κ 0 (i) κ r =10 κ 0 . The white lines represent isothermal lines. The black line in (a) represents observed line.
Fig. 4
Fig. 4 The calculated standard deviation (STD) of the isotherms at the observed line (along the black line in Fig. 3(a)) with different values of m.
Fig. 5
Fig. 5 Current density distribution for different σ r value: (a) σ r = σ 0 , (b) σ r =2 σ 0 , (c) σ r =3 σ 0 ,(d) σ r =4 σ 0 , (e) σ r =5 σ 0 (f) σ r =6 σ 0 (g) σ r =7 σ 0 (h) σ r =8 σ 0 (i) σ r =10 σ 0 . The black lines represent isopotential lines. The red line in (a) represents observed line.
Fig. 6
Fig. 6 The calculated standard deviation of the potential at the observed line (along the red line in Fig. 5(a)) with different values of n.
Fig. 7
Fig. 7 Simulation results. (a) Temperature profile for homogeneous background material. (b) Electric potential distribution for homogeneous background material. (c) Temperature profile for bifunctional concentrator. (d) Electric potential distribution for bifunctional concentrator. The white lines represent isothermal lines or isopotential lines.
Fig. 8
Fig. 8 Experimental measured temperature profile for the bifucntional device. The black circles represent the inner and outer radii of concentrator shell.
Fig. 9
Fig. 9 The simulation and experiment results for the different cases at corresponding positions: (a) x = 31 , (b) x = 31 mm and (c) y = 0 mm. The white lines in inserts represent observed lines.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

κ θ = 1 1 κ A × f A + 1 κ B × f B
κ r = κ A × f A + κ B × f B
σ θ = 1 1 σ A × f A + 1 σ B × f B
σ r = σ A × f A + σ B × f B
κ θ = 1 1 0.3 + 1 2 κ B
κ r = 0.075 + 0.5 × κ B
σ θ = 0
σ r = 0 + 0.5 × σ B

Metrics