Abstract

We demonstrate experimentally the enhanced THz extinction by periodic arrays of resonant semiconductor particles. This phenomenon is explained in terms of the radiative coupling of localized resonances with diffractive orders in the plane of the array (Rayleigh anomalies). The experimental results are described by numerical calculations using a coupled dipole model and by Finite-Difference in Time-Domain simulations. An optimum particle size for enhancing the extinction efficiency of the array is found. This optimum is determined by the frequency detuning between the localized resonances in the individual particles and the Rayleigh anomaly. The extinction calculations and measurements are also compared to near-field simulations illustrating the optimum particle size for the enhancement of the near-field.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of higher-order plasmonic modes in a dense array of split-ring resonators

Dalius Seliuta, Gediminas Šlekas, Andrius Vaitkūnas, Žilvinas Kancleris, and Gintaras Valušis
Opt. Express 25(21) 25113-25124 (2017)

Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays

Dmitry Khlopin, Frédéric Laux, William P. Wardley, Jérôme Martin, Gregory A. Wurtz, Jérôme Plain, Nicolas Bonod, Anatoly V. Zayats, Wayne Dickson, and Davy Gérard
J. Opt. Soc. Am. B 34(3) 691-700 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
    [Crossref]
  2. S. Zou and G.C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62–67 (2005).
    [Crossref]
  3. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [Crossref]
  4. H. Fischer and O.J.F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [Crossref] [PubMed]
  5. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
    [Crossref] [PubMed]
  6. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267 (2007).
    [Crossref]
  7. F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
    [Crossref]
  8. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [Crossref]
  9. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
    [Crossref] [PubMed]
  10. J. Bravo-Abad, L. Martín-Moreno, F. J. Garca-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76, 241102(R) (2007).
    [Crossref]
  11. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
    [Crossref] [PubMed]
  12. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
    [Crossref]
  13. B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 1 (2008).
    [Crossref]
  14. V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
    [Crossref] [PubMed]
  15. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
    [Crossref]
  16. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).
  17. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech. 6, 423–427 (2011).
    [Crossref]
  18. T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B 86, 245425 (2012).
    [Crossref]
  19. G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Chem. Phys. C 115, 24662–24665 (2011).
    [Crossref]
  20. A. B. Evlykhin, C. Reinhart, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
    [Crossref]
  21. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 596–598 (2010).
    [Crossref] [PubMed]
  22. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
    [Crossref] [PubMed]
  23. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
    [Crossref]
  24. A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
    [Crossref]
  25. A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, and M. Walther, “Lattice modes mediate radiative coupling in metamaterial arrays,” Opt. Express 17, 22108–22113 (2009).
    [Crossref] [PubMed]
  26. B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19, 14653–14661 (2011).
    [Crossref] [PubMed]
  27. J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, “Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study,” Opt. Express 19, 17283–17292 (2011).
    [Crossref] [PubMed]
  28. A. Berrier, R. Ulbricht, M. Bonn, and J. G. Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express 18, 23226–23235 (2010).
    [Crossref] [PubMed]
  29. A. Berrier, P. Albella, M. A. Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. Gómez Rivas, “Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators,” Opt. Express 20, 5052–5060 (2012).
    [Crossref] [PubMed]
  30. IOFFE, http://www.ioffe.ru/SVA/NSM/Semicond/Si/basic.html .
  31. Y.-S. Lee, Principles of Terahertz Science and Technology (SpringerUS, 2009).
  32. T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10, 295–317 (1999).
    [Crossref]
  33. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Inc., 1981).
  34. V. Giannini, A. Berrier, S. A. Maier, J. A. Sanchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Lett. 18, 2798–2807 (2010).
  35. M. C. Troparevsky, A. S. Sabau, A. R. Lupini, and Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Opt. Express 18, 24715–24721 (2010).
    [Crossref] [PubMed]
  36. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quant. 2, 739–746 (1996).
    [Crossref]
  37. N. Ashcroft and N. Mermin, Solid State Physics (Holt-Saunders, 1976).
  38. C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid State Electron. 20, 77–89 (1977).
    [Crossref]

2014 (1)

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

2013 (1)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
[Crossref]

2012 (3)

A. Berrier, P. Albella, M. A. Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. Gómez Rivas, “Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators,” Opt. Express 20, 5052–5060 (2012).
[Crossref] [PubMed]

T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B 86, 245425 (2012).
[Crossref]

A. B. Evlykhin, C. Reinhart, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

2011 (6)

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref] [PubMed]

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Chem. Phys. C 115, 24662–24665 (2011).
[Crossref]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech. 6, 423–427 (2011).
[Crossref]

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19, 14653–14661 (2011).
[Crossref] [PubMed]

J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, “Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study,” Opt. Express 19, 17283–17292 (2011).
[Crossref] [PubMed]

2010 (4)

A. Berrier, R. Ulbricht, M. Bonn, and J. G. Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express 18, 23226–23235 (2010).
[Crossref] [PubMed]

M. C. Troparevsky, A. S. Sabau, A. R. Lupini, and Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Opt. Express 18, 24715–24721 (2010).
[Crossref] [PubMed]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sanchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Lett. 18, 2798–2807 (2010).

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 596–598 (2010).
[Crossref] [PubMed]

2009 (2)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[Crossref]

A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, and M. Walther, “Lattice modes mediate radiative coupling in metamaterial arrays,” Opt. Express 17, 22108–22113 (2009).
[Crossref] [PubMed]

2008 (4)

H. Fischer and O.J.F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[Crossref] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 1 (2008).
[Crossref]

V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

2007 (2)

J. Bravo-Abad, L. Martín-Moreno, F. J. Garca-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76, 241102(R) (2007).
[Crossref]

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267 (2007).
[Crossref]

2005 (4)

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
[Crossref]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

S. Zou and G.C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62–67 (2005).
[Crossref]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

2004 (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

1999 (2)

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10, 295–317 (1999).
[Crossref]

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

1996 (1)

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quant. 2, 739–746 (1996).
[Crossref]

1977 (1)

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid State Electron. 20, 77–89 (1977).
[Crossref]

Abass, A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Aizpurua, J.

A. Berrier, P. Albella, M. A. Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. Gómez Rivas, “Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators,” Opt. Express 20, 5052–5060 (2012).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Albella, P.

Alberigi Quaranta, A.

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid State Electron. 20, 77–89 (1977).
[Crossref]

Ashcroft, N.

N. Ashcroft and N. Mermin, Solid State Physics (Holt-Saunders, 1976).

Auguié, B.

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 1 (2008).
[Crossref]

Aussenegg, F.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Barnes, W.

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 1 (2008).
[Crossref]

Berrier, A.

Bitzer, A.

Bonn, M.

Bourillot, E.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Bravo-Abad, J.

J. Bravo-Abad, L. Martín-Moreno, F. J. Garca-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76, 241102(R) (2007).
[Crossref]

Brongersma, S.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref] [PubMed]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Canali, C.

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid State Electron. 20, 77–89 (1977).
[Crossref]

Chen, Z. C.

Chichkov, B. N.

A. B. Evlykhin, C. Reinhart, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
[Crossref]

Coutaz, J.-L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quant. 2, 739–746 (1996).
[Crossref]

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref] [PubMed]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Degiron, A.

T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B 86, 245425 (2012).
[Crossref]

Dereux, A.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Dridi, M.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
[Crossref]

Duvillaret, L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quant. 2, 739–746 (1996).
[Crossref]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Evlykhin, A. B.

A. B. Evlykhin, C. Reinhart, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

Feurer, T.

Fischer, H.

Garca-Vidal, F. J.

J. Bravo-Abad, L. Martín-Moreno, F. J. Garca-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76, 241102(R) (2007).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267 (2007).
[Crossref]

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
[Crossref]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Garet, F.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quant. 2, 739–746 (1996).
[Crossref]

Ghaemi, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Giannini, V.

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19, 14653–14661 (2011).
[Crossref] [PubMed]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sanchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Lett. 18, 2798–2807 (2010).

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[Crossref]

Girard, C.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Gómez Rivas, J.

A. Berrier, P. Albella, M. A. Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. Gómez Rivas, “Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators,” Opt. Express 20, 5052–5060 (2012).
[Crossref] [PubMed]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref] [PubMed]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

V. Giannini, A. Berrier, S. A. Maier, J. A. Sanchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Lett. 18, 2798–2807 (2010).

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[Crossref]

J. Bravo-Abad, L. Martín-Moreno, F. J. Garca-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76, 241102(R) (2007).
[Crossref]

Gómez-Medina, R.

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
[Crossref]

Gotschy, W.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Goudonnet, J.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Grigorenko, A.

V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 596–598 (2010).
[Crossref] [PubMed]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Hanham, S. M.

Helm, H.

Hendry, E.

J. Bravo-Abad, L. Martín-Moreno, F. J. Garca-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76, 241102(R) (2007).
[Crossref]

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Hong, M. H.

Jacoboni, C.

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid State Electron. 20, 77–89 (1977).
[Crossref]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

Janssen, O. T. A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Jensen, T.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10, 295–317 (1999).
[Crossref]

Kabashin, A. V.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 596–598 (2010).
[Crossref] [PubMed]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Kelly, L.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10, 295–317 (1999).
[Crossref]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
[Crossref]

Klein, N.

Koenderink, A. F.

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

Kravets, V.

V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

Kravets, V. G.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 596–598 (2010).
[Crossref] [PubMed]

Krenn, J.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Lacroute, Y.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Lazarides, A.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10, 295–317 (1999).
[Crossref]

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (SpringerUS, 2009).

Leitner, A.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Lezec, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Liew, Y. F.

Lupini, A. R.

Maes, B.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Maier, S. A.

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19, 14653–14661 (2011).
[Crossref] [PubMed]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sanchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Lett. 18, 2798–2807 (2010).

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Martin, O.J.F.

Martín-Moreno, L.

J. Bravo-Abad, L. Martín-Moreno, F. J. Garca-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76, 241102(R) (2007).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Mattei, G.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Chem. Phys. C 115, 24662–24665 (2011).
[Crossref]

Mazzoldi, P.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Chem. Phys. C 115, 24662–24665 (2011).
[Crossref]

Merbold, H.

Mermin, N.

N. Ashcroft and N. Mermin, Solid State Physics (Holt-Saunders, 1976).

Ng, B.

Odom, T. W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
[Crossref]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech. 6, 423–427 (2011).
[Crossref]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref] [PubMed]

Ottaviani, G.

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid State Electron. 20, 77–89 (1977).
[Crossref]

Pellegrini, G.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Chem. Phys. C 115, 24662–24665 (2011).
[Crossref]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Poyli, M. A.

Reinhart, C.

A. B. Evlykhin, C. Reinhart, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Rivas, J. G.

Rodriguez, S. R. K.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref] [PubMed]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Sabau, A. S.

Sáenz, J. J.

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
[Crossref]

Sanchez-Gil, J. A.

V. Giannini, A. Berrier, S. A. Maier, J. A. Sanchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Lett. 18, 2798–2807 (2010).

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref] [PubMed]

Schatz, G. C.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
[Crossref]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10, 295–317 (1999).
[Crossref]

Schatz, G.C.

S. Zou and G.C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62–67 (2005).
[Crossref]

Schedin, F.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 596–598 (2010).
[Crossref] [PubMed]

V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

Schider, G.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Schokker, A. H.

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
[Crossref]

Tang, M.

Teperik, T. V.

T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B 86, 245425 (2012).
[Crossref]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Troparevsky, M. C.

Ulbricht, R.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Inc., 1981).

Van Duyne, R. P.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Vecchi, G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[Crossref]

Wallauer, J.

Walther, M.

Waselikowski, S.

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
[Crossref]

Weeber, J.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Wolff, P.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Zhang, Y.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref] [PubMed]

Zhang, Z.

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
[Crossref]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech. 6, 423–427 (2011).
[Crossref]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

S. Zou and G.C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62–67 (2005).
[Crossref]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

Zywietz, U.

A. B. Evlykhin, C. Reinhart, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

ACS Nano (1)

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Chem. Phys. Lett. (1)

S. Zou and G.C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62–67 (2005).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quant. 2, 739–746 (1996).
[Crossref]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

J. Chem. Phys. C (1)

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Chem. Phys. C 115, 24662–24665 (2011).
[Crossref]

J. Clust. Sci. (1)

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10, 295–317 (1999).
[Crossref]

Nano Lett. (1)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[Crossref] [PubMed]

Nat. Nanotech. (2)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506–511 (2013).
[Crossref]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech. 6, 423–427 (2011).
[Crossref]

Nature (London) (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Opt. Express (7)

H. Fischer and O.J.F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[Crossref] [PubMed]

M. C. Troparevsky, A. S. Sabau, A. R. Lupini, and Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Opt. Express 18, 24715–24721 (2010).
[Crossref] [PubMed]

A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, and M. Walther, “Lattice modes mediate radiative coupling in metamaterial arrays,” Opt. Express 17, 22108–22113 (2009).
[Crossref] [PubMed]

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19, 14653–14661 (2011).
[Crossref] [PubMed]

J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, “Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study,” Opt. Express 19, 17283–17292 (2011).
[Crossref] [PubMed]

A. Berrier, R. Ulbricht, M. Bonn, and J. G. Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express 18, 23226–23235 (2010).
[Crossref] [PubMed]

A. Berrier, P. Albella, M. A. Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. Gómez Rivas, “Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators,” Opt. Express 20, 5052–5060 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 596–598 (2010).
[Crossref] [PubMed]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sanchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Lett. 18, 2798–2807 (2010).

Phys. Rev. B (6)

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

A. B. Evlykhin, C. Reinhart, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B 86, 245425 (2012).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[Crossref]

J. Bravo-Abad, L. Martín-Moreno, F. J. Garca-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76, 241102(R) (2007).
[Crossref]

Phys. Rev. E (1)

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005).
[Crossref]

Phys. Rev. Lett. (4)

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 1 (2008).
[Crossref]

V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267 (2007).
[Crossref]

Solid State Electron. (1)

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid State Electron. 20, 77–89 (1977).
[Crossref]

Other (4)

IOFFE, http://www.ioffe.ru/SVA/NSM/Semicond/Si/basic.html .

Y.-S. Lee, Principles of Terahertz Science and Technology (SpringerUS, 2009).

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Inc., 1981).

N. Ashcroft and N. Mermin, Solid State Physics (Holt-Saunders, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Optical microscope images of arrays of Si tiles on an amorphous quartz substrate. The pitch Γ is 100 μm, the particle lengths d are 25 μm (a), 35 μm (b), 45 μm (c), 55 μm (d) and 65 μm (e). Panel (f) shows an unstructured Si layer.
Fig. 2
Fig. 2 Extinction efficiency (a) and differential phase delay (b) spectra of the Si particle arrays, referenced against a sample without Si structures. From the solid blue to the solid black curves the particle size increases from 25 μm to 85 μm in steps of 10 μm, as indicated in the different panels. The vertical dotted line indicates the RA at 1.6 THz.
Fig. 3
Fig. 3 Extinction efficiency (a) and phase (b) spectra for arrays of 20×20 particles as calculated with the coupled dipole model and the modified long wavelength approximation. The solid curves represent the response of the arrays, the dashed curves that of single particles. The vertical dotted line at 1.5 THz indicates the Rayleigh anomaly condition. For clarity the curves are shifted vertically with respect to 0 (panel (a)) and π (panel (b)), as indicated by the horizontal dotted lines. The Si particles are approximated as oblate spheroids, and are homogeneously surrounded by a loss-less material with a refractive index of n = 2.
Fig. 4
Fig. 4 Coupled dipole model calculations of amplitudes and phases of the fields that contribute to the diffractive coupling, represented by arrows. Panels (a) and (b) represent single particles, panels (c) and (d) particle arrays of oblate spheroids with a length of 35 μm. (a) and (c) are calculated at the SLR frequency (1.44 THz) where the extinction is enhanced, (b) and (d) at the Rayleigh anomaly condition (1.5 THz) at which the extinction efficiency is reduced. The gray arrows indicate the incident field, the red arrows the scattering in the far-field. The green arrows indicate the contributions of the other particles to the local field (black) due to diffractive coupling, and the blue arrow represents the total far-field. The inset in (d) indicates the coordinates of a vector in the complex plane.
Fig. 5
Fig. 5 Extinction efficiency spectra simulated with FDTD for periodic arrays of square Si particles with a length as given in the figure (a) and for single particles (b). The simulations include minor losses in the surrounding substrates and BCB bonding layer. For clarity the curves are shifted vertically, as indicated by the horizontal dotted lines. The vertical dotted line indicates the Rayleigh anomaly condition. The circles correspond to the frequencies at which the near field intensities are simulated as shown in section 7.
Fig. 6
Fig. 6 Analysis of the extinction spectra measurements of Fig. 2 (red triangles) and the results from FDTD simulations displayed in Fig. 5 (blue circles for the arrays and crosses for the single particles). (a) Shows the SLR frequencies, which are the frequencies of maximum extinction of the Si particle arrays, as a function of the particle length. The inset shows the simulated LR frequency for the single particles. The corresponding extinction efficiencies are plotted in (b). The half width at half maximum of the SLRs and LRs are shown in (c). The upper axes display the frequency detuning of the RA of the array with respect to the LRs. The condition of zero detuning is indicated by the vertical dotted lines.
Fig. 7
Fig. 7 Analysis of the extinction spectra calculated with the coupled dipole model and displayed in Fig. 3. The solid curves represent the SLRs of arrays of Si particles, the dashed curves the LRs of individual particles. (a) shows the frequency and (b) the extinction efficiency at the LRs and SLRs conditions as a function of the size of the particle. The half width at half maximum of the resonances are shown in figure (c). The upper axes show for each particle length the corresponding detuning of the RA frequency of the array with respect to the frequency of the LRs. The condition of zero detuning is indicated by the vertical dotted lines.
Fig. 8
Fig. 8 Near-field intensity enhancements simulated with FDTD. The fields are shown in the plane through the center of a particle, defined by the wavevector and the polarization of the incident field. The particles are symmetrically surrounded by amorphous quartz and a 6 μm thick BCB bonding layer. The intensity enhancements are shown on a logarithmic color scale. The incident wave propagates in the −z direction. From top to bottom the particle lengths are 25 μm, 35 μm, 45 μm and 55 μm. The pitch is 100 μm. Panels (a)–(d) are calculated at the frequency of maximum extinction of the SLR, while panels (e)–(h) at the frequency of maximum extinction of the LR.
Fig. 9
Fig. 9 Average intensity enhancement simulated with FDTD in a unit cell of 100 μm × 100 μm × 100 μm for periodic arrays of Si particles and single Si particles as a function of the particle length. Panel (a) shows results at the SLR resonance frequency in the particle arrays, panel (b) for the frequency of the LRs of the single particles. Panels (c) and (d) show the intensity enhancements at the SLR and LR frequencies for similar systems but with particles made out of a perfect electric conductor.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Q ext ( ν ) = 1 I ( ν ) / I ref ( ν ) f .
Δ φ ( ν ) = arg ( t ( ν ) t ref ( ν ) ) arg ( t ref ( ν ) ) .
p i = α E i loc = α ( E inc + E i ens ) .
E i ens = j i G ( r i r j ) p j .
G ( r ) = ( k 2 + ) e i k r r .
E inc = ( α 1 I S ) P = A P ,
Q ext = 16 k n d 2 Im ( E inc P ) | E inc | 2 ,
α m = α m static 1 2 3 i k 3 α m static 2 k 2 d m α m static ,
α m static = V ε p ε s 3 ( ε p ε s ) L m + 3 ε s ,
L m = 0 d 1 d 2 d 3 d s 2 ( s + d m 2 ) 3 2 ( s + d 1 2 ) 1 2 ( s + d 2 2 ) 1 2 ( s + d 3 2 ) 1 2 .
E = E 0 e i ϕ .
E sca = 4 π k i α E loc Γ 2 .
δ = ν RA ν LR ν RA .

Metrics