Abstract

It is theoretically predicted in [Opt. Lett. 37, 1553 (2012)] that a full Poincaré (FP) beam can significantly reduce turbulence-induced scintillation. In this paper, we propose a method for synthesizing a FP beam for different beam orders and report experimental generation of the first-, second- and third-order FP beams. Furthermore, we carry out experimental measurement of the scintillation index of a FP beam passing through thermally induced turbulence. It is demonstrated that the FP beam indeed can significantly reduce the scintillation index compared to a Gaussian beam under certain conditions. Our results will be useful in long-distance free-space optical communications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere

Jiayi Yu, Yan Huang, Fei Wang, Xianlong Liu, Greg Gbur, and Yangjian Cai
Opt. Express 27(19) 26676-26688 (2019)

Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam

Xianlong Liu, Yan Shen, Lin Liu, Fei Wang, and Yangjian Cai
Opt. Lett. 38(24) 5323-5326 (2013)

Full Poincaré beams

Amber M. Beckley, Thomas G. Brown, and Miguel A. Alonso
Opt. Express 18(10) 10777-10785 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 1998).
  2. Y. Cai, Q. Lin, H. T. Eyyuboğlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008).
    [Crossref] [PubMed]
  3. P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere,” J. Opt. 12(1), 015409 (2010).
    [Crossref]
  4. Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37(15), 3240–3242 (2012).
    [Crossref] [PubMed]
  5. M. Yao and O. Korotkova, “Random optical frames in atmospheric turbulence,” J. Opt. 16(10), 105713 (2014).
    [Crossref]
  6. Y. Cai and S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14(4), 1353–1367 (2006).
    [Crossref] [PubMed]
  7. M. Luo and D. Zhao, “Propagation of electromagnetic spectral Gaussian Schell-model beams in atmosphere,” Opt. Commun. 336, 98–102 (2015).
    [Crossref]
  8. H. F. Xu, Z. Zhang, J. Qu, and W. Huang, “Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence,” Opt. Express 22(19), 22479–22489 (2014).
    [Crossref] [PubMed]
  9. X. Chu, “Evolution of an Airy beam in turbulence,” Opt. Lett. 36(14), 2701–2703 (2011).
    [Crossref] [PubMed]
  10. M. Alavinejad, M. Khatiri, and B. Ghafary, “Transmittance of partially coherent flat topped beam with circular and elliptical symmetry in turbulence,” Opt. Commun. 282(17), 3541–3546 (2009).
    [Crossref]
  11. Y. Baykal and H. T. Eyyuboğlu, “Scintillation index of flat-topped Gaussian beams,” Appl. Opt. 45(16), 3793–3797 (2006).
    [Crossref] [PubMed]
  12. Y. Baykal, H. T. Eyyuboğlu, and Y. Cai, “Scintillations of partially coherent multiple Gaussian beams in turbulence,” Appl. Opt. 48(10), 1943–1954 (2009).
    [Crossref] [PubMed]
  13. A. Peleg and J. V. Moloney, “Scintillation index for two Gaussian laser beams with different wavelengths in weak atmospheric turbulence,” J. Opt. Soc. Am. A 23(12), 3114–3122 (2006).
    [Crossref] [PubMed]
  14. Y. Gu and G. Gbur, “Scintillation of Airy beam arrays in atmospheric turbulence,” Opt. Lett. 35(20), 3456–3458 (2010).
    [Crossref] [PubMed]
  15. H. Tang, X. Yuan, and B. Wang, “Scintillation optimization of linear Gaussian beam array propagating through weak turbulence,” J. Mod. Opt. 60(20), 1830–1837 (2013).
    [Crossref]
  16. Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of elliptical Gaussian beam in turbulent atmosphere,” Opt. Lett. 32(16), 2405–2407 (2007).
    [Crossref] [PubMed]
  17. O. Korotkova, O. S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).
    [Crossref]
  18. Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
    [Crossref]
  19. Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).
    [Crossref] [PubMed]
  20. O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281(9), 2342–2348 (2008).
    [Crossref]
  21. S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Media 24(4), 452–462 (2014).
    [Crossref]
  22. Y. Gu and G. Gbur, “Reduction of turbulence-induced scintillation by nonuniformly polarized beam arrays,” Opt. Lett. 37(9), 1553–1555 (2012).
    [Crossref] [PubMed]
  23. Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
    [Crossref] [PubMed]
  24. W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17(20), 17829–17836 (2009).
    [Crossref] [PubMed]
  25. F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
    [Crossref]
  26. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  27. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  28. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  29. K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000).
    [Crossref]
  30. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  31. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010).
    [Crossref] [PubMed]
  32. S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
    [Crossref]
  33. M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, and O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37(16), 3381–3383 (2012).
    [Crossref] [PubMed]
  34. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [Crossref] [PubMed]
  35. V. Ramírez-Sánchez, G. Piquero, and M. Santarsiero, “Generation and characterization of spirally polarized fields,” J. Opt. A: Pure Appl. Opt. 11(8), 085708 (2009).
    [Crossref]
  36. G. M. Philip and N. K. Viswanathan, “Generation of spirally polarized propagation-invariant beam using fiber microaxicon,” Opt. Lett. 36(19), 3906–3908 (2011).
    [Crossref] [PubMed]
  37. X. L. Wang, Y. Li, J. Chen, C. S. Guo, J. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
    [Crossref] [PubMed]
  38. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams,” J. Opt. Soc. Am. A 15(10), 2705–2711 (1998).
    [Crossref]
  39. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18(10), 10777–10785 (2010).
    [Crossref] [PubMed]
  40. W. Han, W. Cheng, and Q. Zhan, “Flattop focusing with full Poincaré beams under low numerical aperture illumination,” Opt. Lett. 36(9), 1605–1607 (2011).
    [Crossref] [PubMed]
  41. W. Cheng, W. Han, and Q. Zhan, “Compact flattop laser beam shaper using vectorial vortex,” Appl. Opt. 52(19), 4608–4612 (2013).
    [Crossref] [PubMed]
  42. H. Wang, G. Rui, and Q. Zhan, “Dynamic propagation of optical vortices embedded in full Poincaré beams with rotationally polarization symmetry,” Opt. Commun. 351, 15–25 (2015).
    [Crossref]
  43. E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt. 51(15), 2925–2934 (2012).
    [Crossref] [PubMed]
  44. A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2 (1990).
    [Crossref]
  45. Y. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32(21), 3179–3181 (2007).
    [Crossref] [PubMed]

2015 (2)

M. Luo and D. Zhao, “Propagation of electromagnetic spectral Gaussian Schell-model beams in atmosphere,” Opt. Commun. 336, 98–102 (2015).
[Crossref]

H. Wang, G. Rui, and Q. Zhan, “Dynamic propagation of optical vortices embedded in full Poincaré beams with rotationally polarization symmetry,” Opt. Commun. 351, 15–25 (2015).
[Crossref]

2014 (4)

H. F. Xu, Z. Zhang, J. Qu, and W. Huang, “Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence,” Opt. Express 22(19), 22479–22489 (2014).
[Crossref] [PubMed]

M. Yao and O. Korotkova, “Random optical frames in atmospheric turbulence,” J. Opt. 16(10), 105713 (2014).
[Crossref]

O. Korotkova, O. S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Media 24(4), 452–462 (2014).
[Crossref]

2013 (5)

H. Tang, X. Yuan, and B. Wang, “Scintillation optimization of linear Gaussian beam array propagating through weak turbulence,” J. Mod. Opt. 60(20), 1830–1837 (2013).
[Crossref]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).
[Crossref] [PubMed]

W. Cheng, W. Han, and Q. Zhan, “Compact flattop laser beam shaper using vectorial vortex,” Appl. Opt. 52(19), 4608–4612 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (3)

2010 (5)

2009 (6)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
[Crossref] [PubMed]

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17(20), 17829–17836 (2009).
[Crossref] [PubMed]

Y. Baykal, H. T. Eyyuboğlu, and Y. Cai, “Scintillations of partially coherent multiple Gaussian beams in turbulence,” Appl. Opt. 48(10), 1943–1954 (2009).
[Crossref] [PubMed]

M. Alavinejad, M. Khatiri, and B. Ghafary, “Transmittance of partially coherent flat topped beam with circular and elliptical symmetry in turbulence,” Opt. Commun. 282(17), 3541–3546 (2009).
[Crossref]

V. Ramírez-Sánchez, G. Piquero, and M. Santarsiero, “Generation and characterization of spirally polarized fields,” J. Opt. A: Pure Appl. Opt. 11(8), 085708 (2009).
[Crossref]

2008 (2)

2007 (3)

2006 (3)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

2000 (2)

K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000).
[Crossref]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

1998 (1)

1990 (1)

A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2 (1990).
[Crossref]

Alavinejad, M.

M. Alavinejad, M. Khatiri, and B. Ghafary, “Transmittance of partially coherent flat topped beam with circular and elliptical symmetry in turbulence,” Opt. Commun. 282(17), 3541–3546 (2009).
[Crossref]

Alonso, M. A.

Avramov-Zamurovic, O. S.

O. Korotkova, O. S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).
[Crossref]

Avramov-Zamurovic, S.

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Media 24(4), 452–462 (2014).
[Crossref]

Baykal, Y.

Beckley, A. M.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Bonaccorso, F.

Brown, T.

Brown, T. G.

A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18(10), 10777–10785 (2010).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000).
[Crossref]

Cai, Y.

Chen, J.

Chen, Y.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of elliptical Gaussian beam in turbulent atmosphere,” Opt. Lett. 32(16), 2405–2407 (2007).
[Crossref] [PubMed]

Cheng, W.

Chu, X.

Ding, J.

Donato, M. G.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Eyyuboglu, H. T.

Ferrari, A. C.

Galvez, E. J.

Gbur, G.

Ghafary, B.

M. Alavinejad, M. Khatiri, and B. Ghafary, “Transmittance of partially coherent flat topped beam with circular and elliptical symmetry in turbulence,” Opt. Commun. 282(17), 3541–3546 (2009).
[Crossref]

Gu, Y.

Gucciardi, P. G.

Guo, C. S.

Han, W.

Haus, J. W.

He, S.

Huang, W.

Jones, P. H.

Khadka, S.

Khatiri, M.

M. Alavinejad, M. Khatiri, and B. Ghafary, “Transmittance of partially coherent flat topped beam with circular and elliptical symmetry in turbulence,” Opt. Commun. 282(17), 3541–3546 (2009).
[Crossref]

Korotkova, O.

O. Korotkova, O. S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).
[Crossref]

M. Yao and O. Korotkova, “Random optical frames in atmospheric turbulence,” J. Opt. 16(10), 105713 (2014).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Media 24(4), 452–462 (2014).
[Crossref]

Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37(15), 3240–3242 (2012).
[Crossref] [PubMed]

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
[Crossref] [PubMed]

O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281(9), 2342–2348 (2008).
[Crossref]

Kozawa, Y.

Leger, J.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Li, Y.

Lin, Q.

Liu, L.

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

Liu, X.

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

Liu, Z.

P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere,” J. Opt. 12(1), 015409 (2010).
[Crossref]

Luo, M.

M. Luo and D. Zhao, “Propagation of electromagnetic spectral Gaussian Schell-model beams in atmosphere,” Opt. Commun. 336, 98–102 (2015).
[Crossref]

Ma, H.

P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere,” J. Opt. 12(1), 015409 (2010).
[Crossref]

Ma, Y.

P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere,” J. Opt. 12(1), 015409 (2010).
[Crossref]

Malek-Madani, R.

O. Korotkova, O. S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Media 24(4), 452–462 (2014).
[Crossref]

Maragò, O. M.

Moloney, J. V.

Nelson, C.

O. Korotkova, O. S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Media 24(4), 452–462 (2014).
[Crossref]

Nomoto, S.

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Peleg, A.

Philip, G. M.

Piquero, G.

V. Ramírez-Sánchez, G. Piquero, and M. Santarsiero, “Generation and characterization of spirally polarized fields,” J. Opt. A: Pure Appl. Opt. 11(8), 085708 (2009).
[Crossref]

Qu, J.

H. F. Xu, Z. Zhang, J. Qu, and W. Huang, “Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence,” Opt. Express 22(19), 22479–22489 (2014).
[Crossref] [PubMed]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Ramírez-Sánchez, V.

V. Ramírez-Sánchez, G. Piquero, and M. Santarsiero, “Generation and characterization of spirally polarized fields,” J. Opt. A: Pure Appl. Opt. 11(8), 085708 (2009).
[Crossref]

Rui, G.

H. Wang, G. Rui, and Q. Zhan, “Dynamic propagation of optical vortices embedded in full Poincaré beams with rotationally polarization symmetry,” Opt. Commun. 351, 15–25 (2015).
[Crossref]

Santarsiero, M.

V. Ramírez-Sánchez, G. Piquero, and M. Santarsiero, “Generation and characterization of spirally polarized fields,” J. Opt. A: Pure Appl. Opt. 11(8), 085708 (2009).
[Crossref]

Sato, S.

Sayed, R.

Schubert, W. H.

Siegman, A. E.

A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2 (1990).
[Crossref]

Tang, H.

H. Tang, X. Yuan, and B. Wang, “Scintillation optimization of linear Gaussian beam array propagating through weak turbulence,” J. Mod. Opt. 60(20), 1830–1837 (2013).
[Crossref]

Tong, Z.

Tovar, A. A.

Vasi, S.

Viswanathan, N. K.

Wang, B.

H. Tang, X. Yuan, and B. Wang, “Scintillation optimization of linear Gaussian beam array propagating through weak turbulence,” J. Mod. Opt. 60(20), 1830–1837 (2013).
[Crossref]

Wang, F.

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

Wang, H.

H. Wang, G. Rui, and Q. Zhan, “Dynamic propagation of optical vortices embedded in full Poincaré beams with rotationally polarization symmetry,” Opt. Commun. 351, 15–25 (2015).
[Crossref]

Wang, H. T.

Wang, X.

P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere,” J. Opt. 12(1), 015409 (2010).
[Crossref]

Wang, X. L.

Xu, H. F.

Xu, X.

P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere,” J. Opt. 12(1), 015409 (2010).
[Crossref]

Yan, S.

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[Crossref]

Yao, B.

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[Crossref]

Yao, M.

M. Yao and O. Korotkova, “Random optical frames in atmospheric turbulence,” J. Opt. 16(10), 105713 (2014).
[Crossref]

Youngworth, K.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000).
[Crossref]

Yuan, X.

H. Tang, X. Yuan, and B. Wang, “Scintillation optimization of linear Gaussian beam array propagating through weak turbulence,” J. Mod. Opt. 60(20), 1830–1837 (2013).
[Crossref]

Yuan, Y.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

Zhan, Q.

Zhang, Z.

Zhao, D.

M. Luo and D. Zhao, “Propagation of electromagnetic spectral Gaussian Schell-model beams in atmosphere,” Opt. Commun. 336, 98–102 (2015).
[Crossref]

Zhou, P.

P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere,” J. Opt. 12(1), 015409 (2010).
[Crossref]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103(9), 091102 (2013).
[Crossref]

J. Mod. Opt. (1)

H. Tang, X. Yuan, and B. Wang, “Scintillation optimization of linear Gaussian beam array propagating through weak turbulence,” J. Mod. Opt. 60(20), 1830–1837 (2013).
[Crossref]

J. Opt. (2)

P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere,” J. Opt. 12(1), 015409 (2010).
[Crossref]

M. Yao and O. Korotkova, “Random optical frames in atmospheric turbulence,” J. Opt. 16(10), 105713 (2014).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

V. Ramírez-Sánchez, G. Piquero, and M. Santarsiero, “Generation and characterization of spirally polarized fields,” J. Opt. A: Pure Appl. Opt. 11(8), 085708 (2009).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Commun. (5)

H. Wang, G. Rui, and Q. Zhan, “Dynamic propagation of optical vortices embedded in full Poincaré beams with rotationally polarization symmetry,” Opt. Commun. 351, 15–25 (2015).
[Crossref]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboglu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).
[Crossref]

M. Luo and D. Zhao, “Propagation of electromagnetic spectral Gaussian Schell-model beams in atmosphere,” Opt. Commun. 336, 98–102 (2015).
[Crossref]

M. Alavinejad, M. Khatiri, and B. Ghafary, “Transmittance of partially coherent flat topped beam with circular and elliptical symmetry in turbulence,” Opt. Commun. 282(17), 3541–3546 (2009).
[Crossref]

O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281(9), 2342–2348 (2008).
[Crossref]

Opt. Express (9)

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17(20), 17829–17836 (2009).
[Crossref] [PubMed]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010).
[Crossref] [PubMed]

H. F. Xu, Z. Zhang, J. Qu, and W. Huang, “Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence,” Opt. Express 22(19), 22479–22489 (2014).
[Crossref] [PubMed]

Y. Cai and S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14(4), 1353–1367 (2006).
[Crossref] [PubMed]

Y. Cai, Q. Lin, H. T. Eyyuboğlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008).
[Crossref] [PubMed]

A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18(10), 10777–10785 (2010).
[Crossref] [PubMed]

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[Crossref] [PubMed]

X. L. Wang, Y. Li, J. Chen, C. S. Guo, J. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
[Crossref] [PubMed]

Opt. Lett. (11)

W. Han, W. Cheng, and Q. Zhan, “Flattop focusing with full Poincaré beams under low numerical aperture illumination,” Opt. Lett. 36(9), 1605–1607 (2011).
[Crossref] [PubMed]

Y. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32(21), 3179–3181 (2007).
[Crossref] [PubMed]

Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37(15), 3240–3242 (2012).
[Crossref] [PubMed]

X. Chu, “Evolution of an Airy beam in turbulence,” Opt. Lett. 36(14), 2701–2703 (2011).
[Crossref] [PubMed]

Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).
[Crossref] [PubMed]

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of elliptical Gaussian beam in turbulent atmosphere,” Opt. Lett. 32(16), 2405–2407 (2007).
[Crossref] [PubMed]

Y. Gu and G. Gbur, “Scintillation of Airy beam arrays in atmospheric turbulence,” Opt. Lett. 35(20), 3456–3458 (2010).
[Crossref] [PubMed]

G. M. Philip and N. K. Viswanathan, “Generation of spirally polarized propagation-invariant beam using fiber microaxicon,” Opt. Lett. 36(19), 3906–3908 (2011).
[Crossref] [PubMed]

M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, and O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37(16), 3381–3383 (2012).
[Crossref] [PubMed]

Y. Gu and G. Gbur, “Reduction of turbulence-induced scintillation by nonuniformly polarized beam arrays,” Opt. Lett. 37(9), 1553–1555 (2012).
[Crossref] [PubMed]

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
[Crossref] [PubMed]

Phys. Rev. A (1)

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[Crossref]

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Proc. SPIE (3)

K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000).
[Crossref]

O. Korotkova, O. S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).
[Crossref]

A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2 (1990).
[Crossref]

Waves Random Media (1)

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Media 24(4), 452–462 (2014).
[Crossref]

Other (1)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup for generating the FP beam with different orders. PC: personal computer; BE: beam expander; SLM: spatial light modulator; CA: circular aperture; BS: 50:50 beam splitter; HP: half wave plate; NDF: neutral density filter; M: reflected mirror; PBS: polarization beam splitter; L: thin lens; BPA: beam profile analysis.
Fig. 2
Fig. 2 (a)-(c) Theoretical results of the intensity distribution of the FP beam with different orders l at the source plane; (a1)-(c1) Experimental results of the intensity distribution of the FP beam captured by BPA just behind the PBS.
Fig. 3
Fig. 3 Intensity patterns of the FP beam with three different orders after passing through a linear polarizer. Second and fourth rows are the experimental results; first and third rows are the corresponding theoretical results.
Fig. 4
Fig. 4 Experimental (first row) and theoretical (second row) results of beam profile of the first-order FP beam against the propagation distance after a thin lens when the angle between the transmission angle of a linear polarizer and x-axis is π/4. (e)-(h). The corresponding theoretical results of the intensity and polarization distribution of the first-order FP beam. A white (green) ellipsoid denotes right- (left-) handedness, and a black line denotes linear polarization.
Fig. 5
Fig. 5 Experimental schematic for measuring the scintillation index of the FP beam passing through thermally induced turbulence.
Fig. 6
Fig. 6 Experimental results of the scintillation index of the FP beam with three different orders as a function of the ratio of the amplitude AL /AG . The temperature of the hot plate at the first row and the second row is 120°C and 150°C, respectively.
Fig. 7
Fig. 7 Experimental results of the scintillation index of the FP beam and the corresponding two constituent modes as a function of the temperature of the hot plate. The ratio of the amplitude AL /AG for two constituent modes equals to one.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E ( r , φ , z ) = A G E 00 ( r , φ , z ) e 1 + A L E 0 l ( r , φ , z ) e 2
E 00 ( r , φ , z ) = ω 0 ω ( z ) exp ( r 2 ω 2 ( z ) ) exp [ i k r 2 2 R ( z ) i ϕ ( z ) ] ,
E 0 l ( r , φ , z ) = A l ω 0 ω ( z ) ( 2 r ω ( z ) ) l exp ( r 2 ω 2 ( z ) ) exp ( i l φ ) × exp [ i k r 2 2 R ( z ) i ( l + 1 ) ϕ ( z ) ] ,
E ( r , φ , z ) = C ( 1 Ω exp [ i δ ] )
m c 2 = I 2 ( u , v ) / I ( u , v ) 2 1 ,
I s ( u i , v j ) = 1 N n = 1 N I n ( u i , v j ) .
x c = i j u i I s ( u i , v j ) / i j I s ( u i , v j ) ,
y c = i j v j I s ( u i , v j ) / i j I s ( u i , v j ) .
m c 2 = j = 1 N P j 2 ( x c , y c ) / N P ¯ 2 1 ,

Metrics