Abstract

With the help of simulations we study the benefits of using coherent, phase-structured illumination to detect the overlay error in resist gratings fabricated by double patterning. Evaluating the intensity and phase distribution along the focused spot of a high numerical aperture microscope, the capability of detecting magnitude and direction of overlay errors in the range of a few nanometers is investigated for a wide range of gratings. Furthermore, two measurement approaches are presented and tested for their reliability in the presence of white Gaussian noise.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wafer-based aberration metrology for lithographic systems using overlay measurements on targets imaged from phase-shift gratings

Sven van Haver, Wim M. J. Coene, Koen D’havé, Niels Geypen, Paul van Adrichem, Laurens de Winter, Augustus J. E. M. Janssen, and Shaunee Cheng
Appl. Opt. 53(12) 2562-2582 (2014)

Isotropic image in structured illumination microscopy patterned with a spatial light modulator

Bo-Jui Chang, Li-Jun Chou, Yun-Ching Chang, and Su-Yu Chiang
Opt. Express 17(17) 14710-14721 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove, “Double Patterning scheme for sub-0.25 k1 single damascene structures at NA = 0.75, λ = 193 nm,” Proc. SPIE 5754, 1508–1518 (2005).
    [Crossref]
  2. C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
    [Crossref]
  3. D. Laidler, P. Leray, K. Dhave, and S. Cheng, “Sources of Overlay Error in Double Patterning Integration Schemes,” Proc. SPIE 6922, 69221E (2008).
    [Crossref]
  4. A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
    [Crossref]
  5. J. Finders, M. Dusa, B. Vleeming, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011002 (2009).
    [Crossref]
  6. C. J. Raymond, “Scatterometry for Semiconductor Metrology,” in Handbook of Silicon Semiconductor Metrology, 374–404 (Marcel Dekker Inc., 2001).
  7. C. J. Raymond, M. E. Littau, A. Chuprin, and S. Ward, “Comparison of solutions to the scatterometry inverse problem,” Proc. SPIE 5375, 564–575 (2004).
    [Crossref]
  8. R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending the limits of image-based optical metrology,” Appl. Opt. 46(20), 4248–4257 (2007).
    [Crossref] [PubMed]
  9. P. De Groot, X. C. de Lega, and J. Liesener, “Model-based white light interference microscopy for metrology of transparent film stacks and optically-unresolved structures,” in Fringe 2009, W. Osten and M. Kujawinska, eds., 236–243 (Springer, 2009).
  10. V. Ferreras Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light: Science & Applications 1(11), e36 (2012).
    [Crossref]
  11. N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent Fourier scatterometry using scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).
    [Crossref]
  12. O. El Gawhary, A. Wiegmann, N. Kumar, S. F. Pereira, and H. P. Urbach, “Through-focus phase retrieval and its connection to the spatial correlation for propagating fields,” Opt. Express 21(5), 5550–5560 (2013).
    [Crossref] [PubMed]
  13. G. Toker, A. Brunfeld, and J. Shamir, “High resolution inspection method for in-line surface testing,” DMTC ’95, SID, 119–120 (1995).
  14. A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
    [Crossref]
  15. B. Spektor, A. Normatov, and J. Shamir, “Experimental validation of 20nm sensitivity of singular beam microscopy,” Proc. SPIE 6616, 661622 (2007).
    [Crossref]
  16. A. Faridian, V. Ferreras Paz, K. Frenner, G. Pedrini, A. Den Boef, and W. Osten, “Phase sensitive structured illumination to detect nano-sized asymmetries in silicon trenches,” J. Micro/Nanolith. MEMS MOEMS. 14(2), 021104 (2015).
    [Crossref]
  17. H. Kim, J. Park, and B. Lee, Fourier Modal Method and its Applications in Computational Nanophotonics (CRC Press, 2012).
  18. F. Charrire, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45(29), 7667–7673 (2006).
    [Crossref]
  19. F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
    [Crossref]

2015 (1)

A. Faridian, V. Ferreras Paz, K. Frenner, G. Pedrini, A. Den Boef, and W. Osten, “Phase sensitive structured illumination to detect nano-sized asymmetries in silicon trenches,” J. Micro/Nanolith. MEMS MOEMS. 14(2), 021104 (2015).
[Crossref]

2013 (2)

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent Fourier scatterometry using scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).
[Crossref]

O. El Gawhary, A. Wiegmann, N. Kumar, S. F. Pereira, and H. P. Urbach, “Through-focus phase retrieval and its connection to the spatial correlation for propagating fields,” Opt. Express 21(5), 5550–5560 (2013).
[Crossref] [PubMed]

2012 (1)

V. Ferreras Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light: Science & Applications 1(11), e36 (2012).
[Crossref]

2010 (1)

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[Crossref]

2009 (2)

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

J. Finders, M. Dusa, B. Vleeming, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011002 (2009).
[Crossref]

2008 (1)

D. Laidler, P. Leray, K. Dhave, and S. Cheng, “Sources of Overlay Error in Double Patterning Integration Schemes,” Proc. SPIE 6922, 69221E (2008).
[Crossref]

2007 (2)

2006 (2)

F. Charrire, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45(29), 7667–7673 (2006).
[Crossref]

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

2005 (1)

M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove, “Double Patterning scheme for sub-0.25 k1 single damascene structures at NA = 0.75, λ = 193 nm,” Proc. SPIE 5754, 1508–1518 (2005).
[Crossref]

2004 (1)

C. J. Raymond, M. E. Littau, A. Chuprin, and S. Ward, “Comparison of solutions to the scatterometry inverse problem,” Proc. SPIE 5375, 564–575 (2004).
[Crossref]

2003 (1)

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

Atlan, M.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[Crossref]

Attota, R.

Ban, K.-D.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Barnes, B. M.

Barnola, S.

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

Berger, R.

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

Brunfeld, A.

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

G. Toker, A. Brunfeld, and J. Shamir, “High resolution inspection method for in-line surface testing,” DMTC ’95, SID, 119–120 (1995).

Charrire, F.

Cheng, S.

J. Finders, M. Dusa, B. Vleeming, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011002 (2009).
[Crossref]

D. Laidler, P. Leray, K. Dhave, and S. Cheng, “Sources of Overlay Error in Double Patterning Integration Schemes,” Proc. SPIE 6922, 69221E (2008).
[Crossref]

Cho, S.-Y.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Choi, J.-S.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Chuprin, A.

C. J. Raymond, M. E. Littau, A. Chuprin, and S. Ward, “Comparison of solutions to the scatterometry inverse problem,” Proc. SPIE 5375, 564–575 (2004).
[Crossref]

Colomb, T.

Cuche, E.

De Groot, P.

P. De Groot, X. C. de Lega, and J. Liesener, “Model-based white light interference microscopy for metrology of transparent film stacks and optically-unresolved structures,” in Fringe 2009, W. Osten and M. Kujawinska, eds., 236–243 (Springer, 2009).

de Lega, X. C.

P. De Groot, X. C. de Lega, and J. Liesener, “Model-based white light interference microscopy for metrology of transparent film stacks and optically-unresolved structures,” in Fringe 2009, W. Osten and M. Kujawinska, eds., 236–243 (Springer, 2009).

Den Boef, A.

A. Faridian, V. Ferreras Paz, K. Frenner, G. Pedrini, A. Den Boef, and W. Osten, “Phase sensitive structured illumination to detect nano-sized asymmetries in silicon trenches,” J. Micro/Nanolith. MEMS MOEMS. 14(2), 021104 (2015).
[Crossref]

Depeursinge, C.

Dhave, K.

D. Laidler, P. Leray, K. Dhave, and S. Cheng, “Sources of Overlay Error in Double Patterning Integration Schemes,” Proc. SPIE 6922, 69221E (2008).
[Crossref]

Dusa, M.

J. Finders, M. Dusa, B. Vleeming, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011002 (2009).
[Crossref]

El Gawhary, O.

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent Fourier scatterometry using scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).
[Crossref]

O. El Gawhary, A. Wiegmann, N. Kumar, S. F. Pereira, and H. P. Urbach, “Through-focus phase retrieval and its connection to the spatial correlation for propagating fields,” Opt. Express 21(5), 5550–5560 (2013).
[Crossref] [PubMed]

Faridian, A.

A. Faridian, V. Ferreras Paz, K. Frenner, G. Pedrini, A. Den Boef, and W. Osten, “Phase sensitive structured illumination to detect nano-sized asymmetries in silicon trenches,” J. Micro/Nanolith. MEMS MOEMS. 14(2), 021104 (2015).
[Crossref]

Ferreras Paz, V.

A. Faridian, V. Ferreras Paz, K. Frenner, G. Pedrini, A. Den Boef, and W. Osten, “Phase sensitive structured illumination to detect nano-sized asymmetries in silicon trenches,” J. Micro/Nanolith. MEMS MOEMS. 14(2), 021104 (2015).
[Crossref]

V. Ferreras Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light: Science & Applications 1(11), e36 (2012).
[Crossref]

Finders, J.

J. Finders, M. Dusa, B. Vleeming, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011002 (2009).
[Crossref]

Frenner, K.

A. Faridian, V. Ferreras Paz, K. Frenner, G. Pedrini, A. Den Boef, and W. Osten, “Phase sensitive structured illumination to detect nano-sized asymmetries in silicon trenches,” J. Micro/Nanolith. MEMS MOEMS. 14(2), 021104 (2015).
[Crossref]

V. Ferreras Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light: Science & Applications 1(11), e36 (2012).
[Crossref]

Gaugiran, S.

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

Gross, M.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[Crossref]

Guilmeau, I.

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

Hazelton, A. J.

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

Hepp, B.

J. Finders, M. Dusa, B. Vleeming, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011002 (2009).
[Crossref]

Hirukawa, S.

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

Hwang, Y.-S.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Ishikawa, J.

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

Joud, F.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[Crossref]

Jun, J.

Jung, J.-K.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Kang, E.-K.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Kerwien, N.

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

Kim, H.

H. Kim, J. Park, and B. Lee, Fourier Modal Method and its Applications in Computational Nanophotonics (CRC Press, 2012).

Kim, H.-S.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Kim, S.-M.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Kumar, N.

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent Fourier scatterometry using scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).
[Crossref]

O. El Gawhary, A. Wiegmann, N. Kumar, S. F. Pereira, and H. P. Urbach, “Through-focus phase retrieval and its connection to the spatial correlation for propagating fields,” Opt. Express 21(5), 5550–5560 (2013).
[Crossref] [PubMed]

Laidler, D.

D. Laidler, P. Leray, K. Dhave, and S. Cheng, “Sources of Overlay Error in Double Patterning Integration Schemes,” Proc. SPIE 6922, 69221E (2008).
[Crossref]

Lapeyre, C.

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

Lee, B.

H. Kim, J. Park, and B. Lee, Fourier Modal Method and its Applications in Computational Nanophotonics (CRC Press, 2012).

Leray, P.

D. Laidler, P. Leray, K. Dhave, and S. Cheng, “Sources of Overlay Error in Double Patterning Integration Schemes,” Proc. SPIE 6922, 69221E (2008).
[Crossref]

Liesener, J.

P. De Groot, X. C. de Lega, and J. Liesener, “Model-based white light interference microscopy for metrology of transparent film stacks and optically-unresolved structures,” in Fringe 2009, W. Osten and M. Kujawinska, eds., 236–243 (Springer, 2009).

Lim, C.-M.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Lim, H.-Y.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Littau, M. E.

C. J. Raymond, M. E. Littau, A. Chuprin, and S. Ward, “Comparison of solutions to the scatterometry inverse problem,” Proc. SPIE 5375, 564–575 (2004).
[Crossref]

Maenhoudt, M.

J. Finders, M. Dusa, B. Vleeming, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011002 (2009).
[Crossref]

M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove, “Double Patterning scheme for sub-0.25 k1 single damascene structures at NA = 0.75, λ = 193 nm,” Proc. SPIE 5754, 1508–1518 (2005).
[Crossref]

Magome, N.

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

Marquet, P.

Marx, E.

McCallum, M.

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

Montfort, F.

Moon, S.-C.

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

Normatov, A.

B. Spektor, A. Normatov, and J. Shamir, “Experimental validation of 20nm sensitivity of singular beam microscopy,” Proc. SPIE 6616, 661622 (2007).
[Crossref]

Osten, W.

A. Faridian, V. Ferreras Paz, K. Frenner, G. Pedrini, A. Den Boef, and W. Osten, “Phase sensitive structured illumination to detect nano-sized asymmetries in silicon trenches,” J. Micro/Nanolith. MEMS MOEMS. 14(2), 021104 (2015).
[Crossref]

V. Ferreras Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light: Science & Applications 1(11), e36 (2012).
[Crossref]

Park, J.

H. Kim, J. Park, and B. Lee, Fourier Modal Method and its Applications in Computational Nanophotonics (CRC Press, 2012).

Patrick, H. J.

Pedrini, G.

A. Faridian, V. Ferreras Paz, K. Frenner, G. Pedrini, A. Den Boef, and W. Osten, “Phase sensitive structured illumination to detect nano-sized asymmetries in silicon trenches,” J. Micro/Nanolith. MEMS MOEMS. 14(2), 021104 (2015).
[Crossref]

Pereira, S. F.

O. El Gawhary, A. Wiegmann, N. Kumar, S. F. Pereira, and H. P. Urbach, “Through-focus phase retrieval and its connection to the spatial correlation for propagating fields,” Opt. Express 21(5), 5550–5560 (2013).
[Crossref] [PubMed]

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent Fourier scatterometry using scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).
[Crossref]

Peterhänsel, S.

V. Ferreras Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light: Science & Applications 1(11), e36 (2012).
[Crossref]

Raymond, C. J.

C. J. Raymond, M. E. Littau, A. Chuprin, and S. Ward, “Comparison of solutions to the scatterometry inverse problem,” Proc. SPIE 5375, 564–575 (2004).
[Crossref]

C. J. Raymond, “Scatterometry for Semiconductor Metrology,” in Handbook of Silicon Semiconductor Metrology, 374–404 (Marcel Dekker Inc., 2001).

Roy, S.

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent Fourier scatterometry using scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).
[Crossref]

Shamir, J.

B. Spektor, A. Normatov, and J. Shamir, “Experimental validation of 20nm sensitivity of singular beam microscopy,” Proc. SPIE 6616, 661622 (2007).
[Crossref]

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

G. Toker, A. Brunfeld, and J. Shamir, “High resolution inspection method for in-line surface testing,” DMTC ’95, SID, 119–120 (1995).

Silver, R. M.

Spektor, B.

B. Spektor, A. Normatov, and J. Shamir, “Experimental validation of 20nm sensitivity of singular beam microscopy,” Proc. SPIE 6616, 661622 (2007).
[Crossref]

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

Stocker, M.

Struyf, H.

M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove, “Double Patterning scheme for sub-0.25 k1 single damascene structures at NA = 0.75, λ = 193 nm,” Proc. SPIE 5754, 1508–1518 (2005).
[Crossref]

Tavrov, A.

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

Tiziani, H.

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

Toker, G.

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

G. Toker, A. Brunfeld, and J. Shamir, “High resolution inspection method for in-line surface testing,” DMTC ’95, SID, 119–120 (1995).

Totzek, M.

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

Urbach, H. P.

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent Fourier scatterometry using scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).
[Crossref]

O. El Gawhary, A. Wiegmann, N. Kumar, S. F. Pereira, and H. P. Urbach, “Through-focus phase retrieval and its connection to the spatial correlation for propagating fields,” Opt. Express 21(5), 5550–5560 (2013).
[Crossref] [PubMed]

Van Hove, M.

M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove, “Double Patterning scheme for sub-0.25 k1 single damascene structures at NA = 0.75, λ = 193 nm,” Proc. SPIE 5754, 1508–1518 (2005).
[Crossref]

Van Olmen, J.

M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove, “Double Patterning scheme for sub-0.25 k1 single damascene structures at NA = 0.75, λ = 193 nm,” Proc. SPIE 5754, 1508–1518 (2005).
[Crossref]

Vandeweyer, T.

J. Finders, M. Dusa, B. Vleeming, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011002 (2009).
[Crossref]

Verpillat, F.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[Crossref]

Versluijs, J.

M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove, “Double Patterning scheme for sub-0.25 k1 single damascene structures at NA = 0.75, λ = 193 nm,” Proc. SPIE 5754, 1508–1518 (2005).
[Crossref]

Vleeming, B.

J. Finders, M. Dusa, B. Vleeming, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011002 (2009).
[Crossref]

Wakamoto, S.

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

Ward, S.

C. J. Raymond, M. E. Littau, A. Chuprin, and S. Ward, “Comparison of solutions to the scatterometry inverse problem,” Proc. SPIE 5375, 564–575 (2004).
[Crossref]

Wiegmann, A.

Appl. Opt. (2)

J. Disp. Technol. (1)

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[Crossref]

J. Eur. Opt. Soc. (1)

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, “Phase retrieval between overlapping orders in coherent Fourier scatterometry using scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).
[Crossref]

J. Micro/Nanolith. MEMS MOEMS. (3)

A. Faridian, V. Ferreras Paz, K. Frenner, G. Pedrini, A. Den Boef, and W. Osten, “Phase sensitive structured illumination to detect nano-sized asymmetries in silicon trenches,” J. Micro/Nanolith. MEMS MOEMS. 14(2), 021104 (2015).
[Crossref]

A. J. Hazelton, S. Wakamoto, S. Hirukawa, M. McCallum, N. Magome, J. Ishikawa, C. Lapeyre, I. Guilmeau, S. Barnola, and S. Gaugiran, “Double-patterning requirements for optical lithography and prospects for optical extension without double patterning,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011003 (2009).
[Crossref]

J. Finders, M. Dusa, B. Vleeming, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations,” J. Micro/Nanolith. MEMS MOEMS. 8(1), 011002 (2009).
[Crossref]

Light: Science & Applications (1)

V. Ferreras Paz, S. Peterhänsel, K. Frenner, and W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light: Science & Applications 1(11), e36 (2012).
[Crossref]

Opt. Express (1)

Proc. SPIE (6)

A. Tavrov, N. Kerwien, R. Berger, H. Tiziani, M. Totzek, B. Spektor, J. Shamir, G. Toker, and A. Brunfeld, “Vector simulations of dark beam interaction with nano-scale surface features,” Proc. SPIE 5144, 26–36 (2003).
[Crossref]

B. Spektor, A. Normatov, and J. Shamir, “Experimental validation of 20nm sensitivity of singular beam microscopy,” Proc. SPIE 6616, 661622 (2007).
[Crossref]

C. J. Raymond, M. E. Littau, A. Chuprin, and S. Ward, “Comparison of solutions to the scatterometry inverse problem,” Proc. SPIE 5375, 564–575 (2004).
[Crossref]

M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove, “Double Patterning scheme for sub-0.25 k1 single damascene structures at NA = 0.75, λ = 193 nm,” Proc. SPIE 5754, 1508–1518 (2005).
[Crossref]

C.-M. Lim, S.-M. Kim, Y.-S. Hwang, J.-S. Choi, K.-D. Ban, S.-Y. Cho, J.-K. Jung, E.-K. Kang, H.-Y. Lim, H.-S. Kim, and S.-C. Moon, “Positive and Negative Tone Double Patterning Lithography For 50nm Flash Memory,” Proc. SPIE 6154, 615410 (2006).
[Crossref]

D. Laidler, P. Leray, K. Dhave, and S. Cheng, “Sources of Overlay Error in Double Patterning Integration Schemes,” Proc. SPIE 6922, 69221E (2008).
[Crossref]

Other (4)

C. J. Raymond, “Scatterometry for Semiconductor Metrology,” in Handbook of Silicon Semiconductor Metrology, 374–404 (Marcel Dekker Inc., 2001).

P. De Groot, X. C. de Lega, and J. Liesener, “Model-based white light interference microscopy for metrology of transparent film stacks and optically-unresolved structures,” in Fringe 2009, W. Osten and M. Kujawinska, eds., 236–243 (Springer, 2009).

G. Toker, A. Brunfeld, and J. Shamir, “High resolution inspection method for in-line surface testing,” DMTC ’95, SID, 119–120 (1995).

H. Kim, J. Park, and B. Lee, Fourier Modal Method and its Applications in Computational Nanophotonics (CRC Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Studied grating: (a) Cross-section of the simulated resist grating on top of a bottom anti-reflective coating (Barc) of 40 nm thickness on a silicon substrate, (b) Sketch of the LELE-method that can be used for the production of the gratings, (c) Definition of studied overlay error xs.

Fig. 2
Fig. 2

Schematic setup: A reflection microscope with a tightly focused beam (NA = 0.7) is used with the addition of a phase plate and a linear polarizer in the illumination path. For normal incidence, the electric field vector is perpendicular to the grating lines for TM polarization and parallel for TE polarization.

Fig. 3
Fig. 3

Intensity and phase distribution of the reflected light in the image plane for a grating with CD = 100 nm, λ = 405 nm, xs = 0 nm and TE polarization. The focus position xf of the illumination is set to the middle of the top of the grating line.

Fig. 4
Fig. 4

Normalized intensity differences ((a) and (b)) and absolute intensity differences ((c) and (d)) between an asymmetric grating with xs-values between ±10 nm and a symmetric one for symmetric (left) and asymmetric (right) intensity distributions of the illumination spot. All gratings have a CD of 150 nm and are illuminated by TE polarized light (λ = 405 nm). The intensity values were rescaled to values between [0,1], where 1 defines the global maximum for xs = 0 nm.

Fig. 5
Fig. 5

Comparison of influence of shift xs in phase for non-structured and structured phase distribution in the measurement spot. Areas with less than 5 % of the maximal intensity (marked gray) were not used for evaluation. The studied grating has a CD of 150 nm and is illuminated with λ = 405 nm and TE polarization.

Fig. 6
Fig. 6

Threshold of CD for detectable signals in intensity and phase depending on wavelength. Dashed lines denote no phase plate, solid lines denote phase plate.

Fig. 7
Fig. 7

Dependence of phase distribution on xf: (a) shows the phase distribution of the cross-sections over xf, (b) shows the value of Δφ for the self-reference approach for different xf – the y-axis denotes the first focus position.

Fig. 8
Fig. 8

Change of Fourier transformed signal for various values of xs: The absolute value of the shift can be determined from |φ̃| and the direction from the phase of φ̃. For better visibility, the peak at xf = 0 for the absolute value in (a) was neglected, as it holds no information.

Fig. 9
Fig. 9

Δφ as defined in (2) as a function of xf for various values of xs. Below the signal the xf-position on a grating without shift is illustrated.

Fig. 10
Fig. 10

Depending on whether the grating on position A or B is selected, the shift xs is denoted as positive or negative.

Fig. 11
Fig. 11

Evaluation of influence of white Gaussian noise on signal.

Fig. 12
Fig. 12

Noise dependence of PV-values for different values of xs. Only for SNR-values below 30 the induced shift will prevent accurate measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ I = I x s I 0 and Δ φ = φ x s φ 0 .
Δ φ = φ x f φ x f + p .

Metrics