Abstract

A largely simplified and highly efficient all-fiber-based synchronously pumping scheme is proposed. The synchronization between pump light and the cavity round-trip can be achieved by adjusting the repetition rate of pumping light without the requirement of altering the cavity length. Based on this scheme, we achieved generating narrow linewidth highly efficient 1120 nm pulse directly from an all-fiber Raman cavity. By pump repetition rate detuning and pump duration adjustment, the duration of the 1120 nm pulse can be widely tuned from 18 ps to ~1 ns, and the repetition rate can be adjusted from 12.41 MHz to 99.28 MHz by harmonic pumping. Up to 4.3 W high power operation is verified based on this scheme. Owing to the compact all-fiber configuration, the conversion efficiency of the 1066 nm pump light to the 1120 nm Stokes light exceeds 80% and the overall conversion efficiency (976 nm-1066 nm-1120 nm) is as high as 53.7%. The nonlinear output dynamics of the Raman laser are comprehensively explored. Two distinct operation regimes are investigated and characterized.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber single-mode actively Q-switched laser at 1120 nm

Jianhua Wang, Shuzhen Cui, Lei Si, Jinbao Chen, and Yan Feng
Opt. Express 21(1) 289-294 (2013)

Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm

T. H. Runcorn, T. Legg, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor
Opt. Express 23(12) 15728-15733 (2015)

Hybrid-pumped, gain-switched 1120  nm ytterbium-doped fiber laser

Hanwei Zhang, Hu Xiao, Pu Zhou, Xiaolin Wang, and Xiaojun Xu
Appl. Opt. 52(33) 8008-8012 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
    [Crossref] [PubMed]
  2. X. Meng, J.-C. Diels, D. Kuehlke, R. Batchko, and R. Byer, “Bidirectional, synchronously pumped, ring optical parametric oscillator,” Opt. Lett. 26(5), 265–267 (2001).
    [Crossref] [PubMed]
  3. M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. Price, A. Malinowski, J. Nilsson, N. G. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27(12), 1052–1054 (2002).
    [Crossref] [PubMed]
  4. J. H. Sun, B. J. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4-2.4 µm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32(11), 1414–1416 (2007).
    [Crossref] [PubMed]
  5. E. Dianov, P. Manryshev, A. Prokhorov, and D. Fursa, “Tunable subpicosecond synchronously pumped fiber-optic stimulated-Raman laser,” JETP Lett. 45, 461–471 (1987).
  6. K. Smith, P. Kean, D. Crust, and W. Sibbett, “An experimental study of a synchronously pumped fibre Raman oscillator,” J. Mod. Opt. 34(9), 1227–1233 (1987).
    [Crossref]
  7. J. D. Kafka and T. Baer, “Fiber Raman soliton laser pumped by a Nd:YAG laser,” Opt. Lett. 12(3), 181–183 (1987).
    [Crossref] [PubMed]
  8. E. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. Prokhorov, and D. Fursa, “Theoretical and experimental study of synchronously pumped dispersion-compensated femtosecond fiber Raman lasers,” J. Opt. Soc. Am. B 7(2), 172–181 (1990).
    [Crossref]
  9. C. J. de Matos, S. V. Popov, and J. R. Taylor, “Short-pulse, all-fiber, Raman laser with dispersion compensation in a holey fiber,” Opt. Lett. 28(20), 1891–1893 (2003).
    [Crossref] [PubMed]
  10. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
    [Crossref] [PubMed]
  11. D. Churin, J. Olson, R. A. Norwood, N. Peyghambarian, and K. Kieu, “High-power synchronously pumped femtosecond Raman fiber laser,” Opt. Lett. 40(11), 2529–2532 (2015).
    [Crossref] [PubMed]
  12. M. Murtagh, J. Lin, R. P. Mildren, G. McConnell, and D. J. Spence, “Efficient diamond Raman laser generating 65 fs pulses,” Opt. Express 23(12), 15504–15513 (2015).
    [Crossref] [PubMed]
  13. S. Kobtsev, S. Kukarin, and A. Kokhanovskiy, “Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre,” Opt. Express 23(14), 18548–18553 (2015).
    [Crossref] [PubMed]
  14. J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005).
    [Crossref] [PubMed]
  15. L. Zhang, J. Hu, J. Wang, and Y. Feng, “Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star,” Opt. Lett. 37(22), 4796–4798 (2012).
    [Crossref] [PubMed]
  16. E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26(10), 1815–1820 (1990).
    [Crossref]
  17. M. Kues, N. Brauckmann, T. Walbaum, P. Gross, and C. Fallnich, “Nonlinear dynamics of femtosecond supercontinuum generation with feedback,” Opt. Express 17(18), 15827–15841 (2009).
    [Crossref] [PubMed]
  18. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
    [Crossref]
  19. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
    [Crossref] [PubMed]
  20. G. Kachen and W. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phys. Rev. A 16(4), 1657–1664 (1977).
    [Crossref]
  21. I. Bar-Joseph, A. Friesem, E. Lichtman, and R. Waarts, “Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers,” J. Opt. Soc. Am. B 2(10), 1606–1611 (1985).
    [Crossref]
  22. R. Johnson and J. Marburger, “Relaxation oscillations in stimulated ruman and brillouin scattering,” Phys. Rev. A 4(3), 1175–1182 (1971).
    [Crossref]

2015 (3)

2012 (1)

2009 (3)

2007 (2)

2005 (1)

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005).
[Crossref] [PubMed]

2003 (1)

2002 (1)

2001 (1)

1997 (1)

1990 (2)

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. Prokhorov, and D. Fursa, “Theoretical and experimental study of synchronously pumped dispersion-compensated femtosecond fiber Raman lasers,” J. Opt. Soc. Am. B 7(2), 172–181 (1990).
[Crossref]

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26(10), 1815–1820 (1990).
[Crossref]

1987 (3)

E. Dianov, P. Manryshev, A. Prokhorov, and D. Fursa, “Tunable subpicosecond synchronously pumped fiber-optic stimulated-Raman laser,” JETP Lett. 45, 461–471 (1987).

K. Smith, P. Kean, D. Crust, and W. Sibbett, “An experimental study of a synchronously pumped fibre Raman oscillator,” J. Mod. Opt. 34(9), 1227–1233 (1987).
[Crossref]

J. D. Kafka and T. Baer, “Fiber Raman soliton laser pumped by a Nd:YAG laser,” Opt. Lett. 12(3), 181–183 (1987).
[Crossref] [PubMed]

1985 (1)

1977 (1)

G. Kachen and W. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phys. Rev. A 16(4), 1657–1664 (1977).
[Crossref]

1971 (1)

R. Johnson and J. Marburger, “Relaxation oscillations in stimulated ruman and brillouin scattering,” Phys. Rev. A 4(3), 1175–1182 (1971).
[Crossref]

Babin, S. A.

Baer, T.

Barad, Y.

Bar-Joseph, I.

Batchko, R.

Brauckmann, N.

Broderick, N. G.

Byer, R.

Calia, D. B.

Churin, D.

Churkin, D. V.

Crust, D.

K. Smith, P. Kean, D. Crust, and W. Sibbett, “An experimental study of a synchronously pumped fibre Raman oscillator,” J. Mod. Opt. 34(9), 1227–1233 (1987).
[Crossref]

de Matos, C. J.

Dianov, E.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26(10), 1815–1820 (1990).
[Crossref]

E. Dianov, P. Manryshev, A. Prokhorov, and D. Fursa, “Tunable subpicosecond synchronously pumped fiber-optic stimulated-Raman laser,” JETP Lett. 45, 461–471 (1987).

Dianov, E. M.

Diels, J.-C.

Fallnich, C.

Feng, Y.

Friesem, A.

Fursa, D.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. Prokhorov, and D. Fursa, “Theoretical and experimental study of synchronously pumped dispersion-compensated femtosecond fiber Raman lasers,” J. Opt. Soc. Am. B 7(2), 172–181 (1990).
[Crossref]

E. Dianov, P. Manryshev, A. Prokhorov, and D. Fursa, “Tunable subpicosecond synchronously pumped fiber-optic stimulated-Raman laser,” JETP Lett. 45, 461–471 (1987).

Gale, B. J.

Girkin, J. M.

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005).
[Crossref] [PubMed]

Golovchenko, E.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26(10), 1815–1820 (1990).
[Crossref]

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. Prokhorov, and D. Fursa, “Theoretical and experimental study of synchronously pumped dispersion-compensated femtosecond fiber Raman lasers,” J. Opt. Soc. Am. B 7(2), 172–181 (1990).
[Crossref]

Granados, E.

Gross, P.

Hanna, D. C.

Horowitz, M.

Hu, J.

Ismagulov, A. E.

Johnson, R.

R. Johnson and J. Marburger, “Relaxation oscillations in stimulated ruman and brillouin scattering,” Phys. Rev. A 4(3), 1175–1182 (1971).
[Crossref]

Kablukov, S. I.

Kachen, G.

G. Kachen and W. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phys. Rev. A 16(4), 1657–1664 (1977).
[Crossref]

Kafka, J. D.

Kean, P.

K. Smith, P. Kean, D. Crust, and W. Sibbett, “An experimental study of a synchronously pumped fibre Raman oscillator,” J. Mod. Opt. 34(9), 1227–1233 (1987).
[Crossref]

Kieu, K.

Kobtsev, S.

Kokhanovskiy, A.

Kuehlke, D.

Kues, M.

Kukarin, S.

Lefort, L.

Lichtman, E.

Lin, J.

Lowdermilk, W.

G. Kachen and W. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phys. Rev. A 16(4), 1657–1664 (1977).
[Crossref]

Malinowski, A.

Mamyshev, P. V.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26(10), 1815–1820 (1990).
[Crossref]

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. Prokhorov, and D. Fursa, “Theoretical and experimental study of synchronously pumped dispersion-compensated femtosecond fiber Raman lasers,” J. Opt. Soc. Am. B 7(2), 172–181 (1990).
[Crossref]

Manryshev, P.

E. Dianov, P. Manryshev, A. Prokhorov, and D. Fursa, “Tunable subpicosecond synchronously pumped fiber-optic stimulated-Raman laser,” JETP Lett. 45, 461–471 (1987).

Marburger, J.

R. Johnson and J. Marburger, “Relaxation oscillations in stimulated ruman and brillouin scattering,” Phys. Rev. A 4(3), 1175–1182 (1971).
[Crossref]

McConnell, G.

M. Murtagh, J. Lin, R. P. Mildren, G. McConnell, and D. J. Spence, “Efficient diamond Raman laser generating 65 fs pulses,” Opt. Express 23(12), 15504–15513 (2015).
[Crossref] [PubMed]

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005).
[Crossref] [PubMed]

Meng, X.

Mildren, R. P.

Murtagh, M.

Nilsson, J.

Norwood, R. A.

O’Connor, M. V.

Olson, J.

Pask, H. M.

Peyghambarian, N.

Pilipetskii, A. N.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26(10), 1815–1820 (1990).
[Crossref]

Podivilov, E. V.

Popov, S. V.

Price, J. H.

Prokhorov, A.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. Prokhorov, and D. Fursa, “Theoretical and experimental study of synchronously pumped dispersion-compensated femtosecond fiber Raman lasers,” J. Opt. Soc. Am. B 7(2), 172–181 (1990).
[Crossref]

E. Dianov, P. Manryshev, A. Prokhorov, and D. Fursa, “Tunable subpicosecond synchronously pumped fiber-optic stimulated-Raman laser,” JETP Lett. 45, 461–471 (1987).

Reid, D. T.

Richardson, D. J.

Shepherd, D. P.

Sibbett, W.

K. Smith, P. Kean, D. Crust, and W. Sibbett, “An experimental study of a synchronously pumped fibre Raman oscillator,” J. Mod. Opt. 34(9), 1227–1233 (1987).
[Crossref]

Silberberg, Y.

Smith, K.

K. Smith, P. Kean, D. Crust, and W. Sibbett, “An experimental study of a synchronously pumped fibre Raman oscillator,” J. Mod. Opt. 34(9), 1227–1233 (1987).
[Crossref]

Spence, D. J.

Sun, J. H.

Taylor, J. R.

Taylor, L. R.

Waarts, R.

Walbaum, T.

Wang, J.

Watson, M. A.

Zhang, L.

IEEE J. Quantum Electron. (1)

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26(10), 1815–1820 (1990).
[Crossref]

J. Mod. Opt. (1)

K. Smith, P. Kean, D. Crust, and W. Sibbett, “An experimental study of a synchronously pumped fibre Raman oscillator,” J. Mod. Opt. 34(9), 1227–1233 (1987).
[Crossref]

J. Opt. Soc. Am. B (3)

JETP Lett. (1)

E. Dianov, P. Manryshev, A. Prokhorov, and D. Fursa, “Tunable subpicosecond synchronously pumped fiber-optic stimulated-Raman laser,” JETP Lett. 45, 461–471 (1987).

Microsc. Res. Tech. (1)

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (8)

L. Zhang, J. Hu, J. Wang, and Y. Feng, “Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star,” Opt. Lett. 37(22), 4796–4798 (2012).
[Crossref] [PubMed]

D. Churin, J. Olson, R. A. Norwood, N. Peyghambarian, and K. Kieu, “High-power synchronously pumped femtosecond Raman fiber laser,” Opt. Lett. 40(11), 2529–2532 (2015).
[Crossref] [PubMed]

J. D. Kafka and T. Baer, “Fiber Raman soliton laser pumped by a Nd:YAG laser,” Opt. Lett. 12(3), 181–183 (1987).
[Crossref] [PubMed]

M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
[Crossref] [PubMed]

X. Meng, J.-C. Diels, D. Kuehlke, R. Batchko, and R. Byer, “Bidirectional, synchronously pumped, ring optical parametric oscillator,” Opt. Lett. 26(5), 265–267 (2001).
[Crossref] [PubMed]

M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. Price, A. Malinowski, J. Nilsson, N. G. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27(12), 1052–1054 (2002).
[Crossref] [PubMed]

C. J. de Matos, S. V. Popov, and J. R. Taylor, “Short-pulse, all-fiber, Raman laser with dispersion compensation in a holey fiber,” Opt. Lett. 28(20), 1891–1893 (2003).
[Crossref] [PubMed]

J. H. Sun, B. J. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4-2.4 µm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32(11), 1414–1416 (2007).
[Crossref] [PubMed]

Phys. Rev. A (2)

G. Kachen and W. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phys. Rev. A 16(4), 1657–1664 (1977).
[Crossref]

R. Johnson and J. Marburger, “Relaxation oscillations in stimulated ruman and brillouin scattering,” Phys. Rev. A 4(3), 1175–1182 (1971).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the experiment configuration. DFB-LD: distribute feedback laser diode; GS: gain switching; ISO: optical isolator. BPF: bandpass filter; FBG: fiber Bragg grating; HR: high reflectivity; LR: low reflectivity; WDM: wavelength-division multiplexer; PD: photodetector; OSA: optical spectrum analyzer; RSA: radio frequency analyzer.
Fig. 2
Fig. 2 The optical spectrum (a) and pulse waveform (b) of the amplified 1066 nm pump pulses, when the pump power is 3 W.
Fig. 3
Fig. 3 (a). The 1120 nm output power as the function of the pump power in the operation regime I and II; (b). The comparison of the output pulse waveforms under the pump power of 1.2 W and 1.8 W in regime I; (c).The optical spectra of output pulses under the pump power of 1.2 W, 1.8 W and 2.1 W in regime I, and the inset shows the zoomed spectra on the top; (d). The radio frequency spectrum and the oscilloscope trace (inset figure) of the 1120 nm output pulse with the pump power of 1.2 W in regime I; The comparison of (e) the pulse waveforms and (f) the corresponding optical spectra of output 1120 nm pulses under the pump power of 0.5 W, 1.2 W and 2.1 W in regime II, and the inset shows the zoomed spectra on the top.
Fig. 4
Fig. 4 The different 1120 nm pulse waveforms when the pump repetition rate is detuned from 12.4710 MHz by + 2.4 kHz, + 1.2 kHz, 0 kHz, −1.2 kHz, −2.4 kHz, −4.8 kHz, and the corresponding waveforms of 1066 nm pump residue when the pump detuning is set at + 1.2 kHz, 0 kHz.
Fig. 5
Fig. 5 The radio frequency spectrum and the oscilloscope trace (inset figure) of the 1120 nm output pulse with (a). The 2nd harmonic pumping under the pump power of 1.5 W, and (b). The 8th harmonic pumping under the pump power of 5.1 W. (c). The variations of the 1120 nm output power versus the increasing of the pump power under the 2nd, 3rd, 5th, and 8th harmonic pumping.
Fig. 6
Fig. 6 The evolution of the output 1120 nm pulse waveforms with the pump pulses of different durations and powers.

Metrics