Abstract

A random laser on the optical fiber facet is constructed by dipping an optical fiber end face into the solution of polydimethylsiloxane doped with rhodamine 6G organic dye and silver nanowires. The PDMS film doped with rhodamine 6G acts as the active waveguide layer, and the silver nanowires provide a three-dimensional plasmonic feedback. The plasmon resonance of silver nanowires significantly improves the pump efficiency of the random laser. The most output energy of random laser concentrates in a small angle range along the axis of the optical fiber. This fabrication technique provides a simple and efficient way for the fabrication of random lasers on the optical fiber facet with low cost.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic random lasing in polymer fiber

Songtao Li, Li Wang, Tianrui Zhai, Li Chen, Meng Wang, Yimeng Wang, Fei Tong, Yonglu Wang, and Xinping Zhang
Opt. Express 24(12) 12748-12754 (2016)

Ultra-thin plasmonic random lasers

Tianrui Zhai, Zhiyang Xu, Xiaofeng Wu, Yimeng Wang, Feifei Liu, and Xinping Zhang
Opt. Express 24(1) 437-442 (2016)

Coherent plasmonic random laser pumped by nanosecond pulses far from the resonance peak of silver nanowires

Yanyan Sun, Zhaona Wang, Xiaoyu Shi, Yanrong Wang, Xiaoye Zhao, Shujing Chen, Jinwei Shi, Jing Zhou, and Dahe Liu
J. Opt. Soc. Am. B 30(9) 2523-2528 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [Crossref]
  2. D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  3. D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
    [Crossref] [PubMed]
  4. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
    [Crossref] [PubMed]
  5. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  6. Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
    [Crossref] [PubMed]
  7. S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in pi-conjugated polymer thin films,” Phys. Rev. Lett. 78(4), 729–732 (1997).
    [Crossref]
  8. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
    [Crossref]
  9. E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
    [Crossref]
  10. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
    [Crossref] [PubMed]
  11. X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
    [Crossref]
  12. X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
    [Crossref]
  13. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
    [Crossref] [PubMed]
  14. L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
    [Crossref]
  15. R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71(4), 045205 (2005).
    [Crossref]
  16. T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
    [Crossref]
  17. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [Crossref]
  18. S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “Random fiber laser directly pumped by a high-power laser diode,” Opt. Lett. 38(17), 3301–3303 (2013).
    [Crossref] [PubMed]
  19. W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21(7), 8544–8549 (2013).
    [Crossref] [PubMed]
  20. C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
    [Crossref] [PubMed]
  21. S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
    [Crossref]
  22. T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
    [Crossref] [PubMed]
  23. X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
    [Crossref]
  24. Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
    [Crossref] [PubMed]
  25. P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
    [Crossref]
  26. A. Camposeo, F. Di Benedetto, R. Stabile, A. A. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
    [Crossref] [PubMed]

2015 (2)

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

2013 (6)

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “Random fiber laser directly pumped by a high-power laser diode,” Opt. Lett. 38(17), 3301–3303 (2013).
[Crossref] [PubMed]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21(7), 8544–8549 (2013).
[Crossref] [PubMed]

P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

2012 (2)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

2011 (1)

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

2010 (2)

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

2009 (1)

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

2008 (2)

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

2007 (2)

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[Crossref] [PubMed]

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

2005 (1)

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71(4), 045205 (2005).
[Crossref]

2001 (1)

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

1997 (1)

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in pi-conjugated polymer thin films,” Phys. Rev. Lett. 78(4), 729–732 (1997).
[Crossref]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Ania-Castanon, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Babin, S.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Babin, S. A.

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “Random fiber laser directly pumped by a high-power laser diode,” Opt. Lett. 38(17), 3301–3303 (2013).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Brito-Silva, A. M.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Camposeo, A.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Cavalieri, S.

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chen, J.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Chen, L.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Chen, S.

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Chen, X.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

Chen, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Churkin, D.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Cingolani, R.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Cui, L.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

de Araújo, C. B.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

de Matos, C. J.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

de S Menezes, L.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Di Benedetto, F.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Dontsova, E. I.

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Feng, S.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Flehr, R.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Frolov, S. V.

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in pi-conjugated polymer thin films,” Phys. Rev. Lett. 78(4), 729–732 (1997).
[Crossref]

Fu, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Fujita, K.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Gellermann, W.

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in pi-conjugated polymer thin films,” Phys. Rev. Lett. 78(4), 729–732 (1997).
[Crossref]

Gomes, A. S.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Gong, W.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Heydari, E.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Hu, Z.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Jia, X. H.

Kablukov, S. I.

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “Random fiber laser directly pumped by a high-power laser diode,” Opt. Lett. 38(17), 3301–3303 (2013).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Li, Q.

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Li, S.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Liu, D.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Liu, H.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Luo, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Martinez Gámez, M. A.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Meng, X.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Miao, B.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Ming, H.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Moriguchi, Y.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

Murai, S.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Neves, A. A.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Nikulin, M.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Ozaki, M.

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in pi-conjugated polymer thin films,” Phys. Rev. Lett. 78(4), 729–732 (1997).
[Crossref]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Pisignano, D.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Podivilov, E.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71(4), 045205 (2005).
[Crossref]

Rao, Y. J.

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Sebbah, P.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[Crossref] [PubMed]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Shi, J.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Shi, X.

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Stabile, R.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Stumpe, J.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Su, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Sun, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Tanaka, K.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Tong, L.

P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
[Crossref]

Turitsyn, S.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Vanneste, C.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[Crossref] [PubMed]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71(4), 045205 (2005).
[Crossref]

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in pi-conjugated polymer thin films,” Phys. Rev. Lett. 78(4), 729–732 (1997).
[Crossref]

Vatnik, I.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Wang, J.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Wang, L.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Wang, P.

P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wang, Y.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
[Crossref]

Wang, Z.

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Wang, Z. N.

Wei, S.

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Wiersma, D.

D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Wiersma, D. S.

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Wu, H.

Yoshino, K.

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in pi-conjugated polymer thin films,” Phys. Rev. Lett. 78(4), 729–732 (1997).
[Crossref]

Zhai, T.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Zhang, D.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Zhang, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Zhang, W. L.

Zhang, X.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Zhang, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zheng, R.

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

Y. Wang, X. Shi, Y. Sun, R. Zheng, S. Wei, J. Shi, Z. Wang, and D. Liu, “Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires,” Opt. Lett. 39(1), 5–8 (2014).
[Crossref] [PubMed]

Zhou, J.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Zhou, Y.

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Zhu, Y. Y.

Zong, Y.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Zou, G.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Appl. Phys. Lett. (4)

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, and D. Liu, “Retrieval of contaminated information using random lasers,” Appl. Phys. Lett. 106(20), 201101 (2015).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Light Sci. Appl. (1)

P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
[Crossref]

Nano Lett. (1)

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Nanoscale (1)

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Nat. Phys. (1)

D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Nature (2)

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rep. (1)

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Phys. Rev. A (1)

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Phys. Rev. B (1)

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71(4), 045205 (2005).
[Crossref]

Phys. Rev. Lett. (5)

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in pi-conjugated polymer thin films,” Phys. Rev. Lett. 78(4), 729–732 (1997).
[Crossref]

Small (1)

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of a plasmonic random laser on the optical fiber facet. (b) Optical micrograph of the front view of the random laser on the optical fiber facet. (c) Optical micrograph of the side view of the random laser on the optical fiber facet. The scale bars represent 200 nm.
Fig. 2
Fig. 2 (a) The optical micrograph of Ag NWs embedded in the PDMS film. The scale bar is 50 μm. (b) The SEM image of the side view of the random laser on the optical fiber facet. The scale bar indicates 500 μm. (c) Ag NW SEM micrograph on a section of the plasmonic random laser. The scale bar denotes 5 μm.
Fig. 3
Fig. 3 Extinction of Ag NWs, the photoluminescence spectra of the R6G, Ag NWs and R6G doped in PDMS, respectively.
Fig. 4
Fig. 4 (a) Spectra of the random laser emissions at various pump power densities. (b) The intensity and FWHM of the output laser as a function of the pump power density, indicating a pump threshold of about 4.2 nJ/cm2.
Fig. 5
Fig. 5 (a) Schematic of the the intensity measurement at different angles. (b) The intensity of the output laser as a function of the angle.

Metrics