Abstract

We present a high repetition rate mid-infrared optical parametric master oscillator power amplifier (MOPA) scheme, which is tunable from 1370 to 4120nm. Up to 4.3W average output power are generated at 1370nm, corresponding to a photon conversion efficiency of 78%. Bandwidths of 6 to 12nm with pulse durations between 250 and 400fs have been measured. Strong conversion saturation over the whole signal range is observed, resulting in excellent power stability. The system consists of a fiber-feedback optical parametric oscillator that seeds an optical parametric power amplifier. Both systems are pumped by the same Yb:KGW femtosecond oscillator.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
    [Crossref] [PubMed]
  2. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999).
    [Crossref] [PubMed]
  3. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
    [Crossref]
  4. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  5. S. C. Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7 µ m based on CdSiP2,” Opt. Lett. 40, 1398–1401 (2015).
    [Crossref]
  6. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 µ m,” Opt. Lett. 34, 1330–1332 (2009).
    [Crossref] [PubMed]
  7. Z. Zhang, D. T. Reid, S. C. Kumar, M. Ebrahim-Zadeh, P. G. Schunemann, K. T. Zawilski, and C. R. Howle, “Femtosecond-laser pumped CdSiP2 optical parametric oscillator producing 100MHz pulses centered at 6.2 µ m,” Opt. Lett. 38, 5110–5113 (2013).
    [Crossref] [PubMed]
  8. M. Beutler, I. Rimke, E. Büttner, P. Farinello, A. Agnesi, V. Badikov, D. Badikov, and V. Petrov, “Difference-frequency generation of ultrashort pulses in the mid-IR using Yb-fiber pump systems and AgGaSe2,” Opt. Express 23, 2730–2736 (2015).
    [Crossref] [PubMed]
  9. M. Beutler, I. Rimke, E. Büttner, V. Petrov, and L. Isaenko, “Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources,” Opt. Lett. 39, 4353–4355 (2014).
    [Crossref] [PubMed]
  10. Y. Tzeng, Y. Lin, C. Huang, J. Liu, H. Chui, H. Liu, J. M. Stone, J. C. Knight, and S. Chu, “Broadband tunable optical parametric amplification from a single 50MHz ultrafast fiber laser,” Opt. Express 17, 7304–7309 (2009).
    [Crossref] [PubMed]
  11. J. Krauth, A. Steinmann, R. Hegenbarth, M. Conforti, and H. Giessen, “Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 41.7MHz Yb:KGW oscillator,” Opt. Express 21, 11516–11522 (2013).
    [Crossref] [PubMed]
  12. A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, “Megahertz optical parametric amplifier pumped by a femtosecond oscillator,” Opt. Lett. 31, 125–127 (2006).
    [Crossref] [PubMed]
  13. M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, “Near-infrared optical parametric amplifier at 1MHz directly pumped by a femtosecond oscillator,” Opt. Lett. 32, 1489–1491 (2007).
    [Crossref] [PubMed]
  14. H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2W tunable output in the NIR,” Opt. Express 22, 18072–18077 (2014).
    [Crossref] [PubMed]
  15. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
    [Crossref]
  16. T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 µ m to 4.4 µ m based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
    [Crossref] [PubMed]
  17. T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, “Watt-level optical parametric amplifier at 42MHz tunable from 1.35 to 4.5 µ m coherently seeded with solitons,” Opt. Express 22, 9567–9573 (2014).
    [Crossref] [PubMed]
  18. S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37, 554–556 (2012).
    [Crossref] [PubMed]
  19. T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29, 1111–1113 (2004).
    [Crossref]
  20. T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26, 304–306 (2001).
    [Crossref]
  21. T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 µ m diameter,” Opt. Express 23, 11105–11113 (2015).
    [Crossref] [PubMed]
  22. S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µ m to 8 µ m,” Appl. Phys. B 69, 423–428 (1999).
    [Crossref]
  23. S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40, 2668–2671 (2015).
    [Crossref] [PubMed]
  24. A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of CLEO 2011 (Optical Society of America, 2011), CThAA5.

2015 (5)

2014 (3)

2013 (2)

2012 (2)

2011 (1)

2009 (2)

2007 (1)

2006 (1)

2004 (1)

2003 (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

2001 (1)

1999 (2)

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999).
[Crossref] [PubMed]

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µ m to 8 µ m,” Appl. Phys. B 69, 423–428 (1999).
[Crossref]

1997 (1)

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[Crossref] [PubMed]

Adler, F.

Agnesi, A.

Aus der Au, J.

Badikov, D.

Badikov, V.

Bartelt, H.

Beigang, R.

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µ m to 8 µ m,” Appl. Phys. B 69, 423–428 (1999).
[Crossref]

Beutler, M.

Brida, D.

Brunner, F.

Büttner, E.

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Cerullo, G.

Chu, S.

Chui, H.

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Conforti, M.

Cossel, K. C.

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

Demirbas, U.

Diddams, S. A.

Ebrahim-Zadeh, M.

Farinello, P.

Fehrenbacher, D.

Fermann, M. E.

Giessen, H.

Hanna, D. C.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Hartl, I.

Hegenbarth, R.

Howle, C. R.

Huang, C.

Innerhofer, E.

Isaenko, L.

Ito, H.

Johnson, T. A.

Kedenburg, S.

Keller, U.

Killi, A.

Kitamura, K.

Knight, J. C.

Kobelke, J.

Krauss, G.

Krauth, J.

Kumar, S. C.

Kumkar, S.

Kurimura, S.

Leitenstorfer, A.

Lin, Y.

Linden, S.

Linnenbank, H.

Liu, H.

Liu, J.

Maiti, S.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[Crossref] [PubMed]

Marangoni, M.

Marzenell, S.

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µ m to 8 µ m,” Appl. Phys. B 69, 423–428 (1999).
[Crossref]

Metzger, B.

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of CLEO 2011 (Optical Society of America, 2011), CThAA5.

Morgner, U.

Mörz, F.

Neely, T. W.

Neubrech, F.

Osellame, R.

Palmer, G.

Paschotta, R.

Petrov, V.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Ramponi, R.

Reid, D. T.

Rimke, I.

Ross, G. W.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Schunemann, P. G.

Shear, J. B.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[Crossref] [PubMed]

Silberberg, Y.

Smith, P. G. R.

Steinle, T.

Steinmann, A.

S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40, 2668–2671 (2015).
[Crossref] [PubMed]

T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 µ m diameter,” Opt. Express 23, 11105–11113 (2015).
[Crossref] [PubMed]

S. C. Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7 µ m based on CdSiP2,” Opt. Lett. 40, 1398–1401 (2015).
[Crossref]

T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, “Watt-level optical parametric amplifier at 42MHz tunable from 1.35 to 4.5 µ m coherently seeded with solitons,” Opt. Express 22, 9567–9573 (2014).
[Crossref] [PubMed]

J. Krauth, A. Steinmann, R. Hegenbarth, M. Conforti, and H. Giessen, “Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 41.7MHz Yb:KGW oscillator,” Opt. Express 21, 11516–11522 (2013).
[Crossref] [PubMed]

M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, “Near-infrared optical parametric amplifier at 1MHz directly pumped by a femtosecond oscillator,” Opt. Lett. 32, 1489–1491 (2007).
[Crossref] [PubMed]

A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, “Megahertz optical parametric amplifier pumped by a femtosecond oscillator,” Opt. Lett. 31, 125–127 (2006).
[Crossref] [PubMed]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of CLEO 2011 (Optical Society of America, 2011), CThAA5.

Stone, J. M.

Südmeyer, T.

Thorpe, M. J.

Tzeng, Y.

Usami, T.

Wallenstein, R.

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µ m to 8 µ m,” Appl. Phys. B 69, 423–428 (1999).
[Crossref]

Webb, W. W.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[Crossref] [PubMed]

Williams, R. M.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[Crossref] [PubMed]

Wunram, M.

Ye, J.

Yelin, D.

Yin, X.

Zawilski, K. T.

Zhang, Z.

Zipfel, W. R.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[Crossref] [PubMed]

Appl. Phys. B (1)

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µ m to 8 µ m,” Appl. Phys. B 69, 423–428 (1999).
[Crossref]

Nat. Photonics (2)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Opt. Express (7)

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999).
[Crossref] [PubMed]

M. Beutler, I. Rimke, E. Büttner, P. Farinello, A. Agnesi, V. Badikov, D. Badikov, and V. Petrov, “Difference-frequency generation of ultrashort pulses in the mid-IR using Yb-fiber pump systems and AgGaSe2,” Opt. Express 23, 2730–2736 (2015).
[Crossref] [PubMed]

Y. Tzeng, Y. Lin, C. Huang, J. Liu, H. Chui, H. Liu, J. M. Stone, J. C. Knight, and S. Chu, “Broadband tunable optical parametric amplification from a single 50MHz ultrafast fiber laser,” Opt. Express 17, 7304–7309 (2009).
[Crossref] [PubMed]

J. Krauth, A. Steinmann, R. Hegenbarth, M. Conforti, and H. Giessen, “Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 41.7MHz Yb:KGW oscillator,” Opt. Express 21, 11516–11522 (2013).
[Crossref] [PubMed]

T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, “Watt-level optical parametric amplifier at 42MHz tunable from 1.35 to 4.5 µ m coherently seeded with solitons,” Opt. Express 22, 9567–9573 (2014).
[Crossref] [PubMed]

H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2W tunable output in the NIR,” Opt. Express 22, 18072–18077 (2014).
[Crossref] [PubMed]

T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 µ m diameter,” Opt. Express 23, 11105–11113 (2015).
[Crossref] [PubMed]

Opt. Lett. (11)

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 µ m to 4.4 µ m based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
[Crossref] [PubMed]

S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40, 2668–2671 (2015).
[Crossref] [PubMed]

S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37, 554–556 (2012).
[Crossref] [PubMed]

T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29, 1111–1113 (2004).
[Crossref]

T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26, 304–306 (2001).
[Crossref]

A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, “Megahertz optical parametric amplifier pumped by a femtosecond oscillator,” Opt. Lett. 31, 125–127 (2006).
[Crossref] [PubMed]

M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, “Near-infrared optical parametric amplifier at 1MHz directly pumped by a femtosecond oscillator,” Opt. Lett. 32, 1489–1491 (2007).
[Crossref] [PubMed]

M. Beutler, I. Rimke, E. Büttner, V. Petrov, and L. Isaenko, “Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources,” Opt. Lett. 39, 4353–4355 (2014).
[Crossref] [PubMed]

S. C. Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7 µ m based on CdSiP2,” Opt. Lett. 40, 1398–1401 (2015).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 µ m,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref] [PubMed]

Z. Zhang, D. T. Reid, S. C. Kumar, M. Ebrahim-Zadeh, P. G. Schunemann, K. T. Zawilski, and C. R. Howle, “Femtosecond-laser pumped CdSiP2 optical parametric oscillator producing 100MHz pulses centered at 6.2 µ m,” Opt. Lett. 38, 5110–5113 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

Science (1)

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[Crossref] [PubMed]

Other (1)

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of CLEO 2011 (Optical Society of America, 2011), CThAA5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. An Yb:KGW oscillator is used to pump a fiber-feedback OPO (I) at a maximum power of 1.5W. The OPO supplies radiation between 1370 and 2000nm with wavelength dependent power of 25 – 320mW that is applied to seed an OPA (II). Up to 6.25W pump power is used to synchronously pump this power amplifier at the oscillator repetition rate. Both signal (1370 – 2000nm) and idler (2100 – 4120nm) of the post amplifier can be used for further experiments. HWP: Half-wave plate, BS: Beamsplitter, DC: Dichroic mirror, TC: Temperature control.

Fig. 2
Fig. 2

Tuning range and average output power of the OPA (a). Watt-level output power is achieved over almost the whole tuning range of 1370 to 4120nm, with maximum output power of 4.3W. The OPA is pumped with 6.25W at 1370 – 1500nm. The pump power is then constantly reduced to 3.3W at 2000nm. Assuming sech2 pulse shapes, the signal pulse duration is on the order of 250 and 400fs between 1370 and 1650nm (b). Typical time bandwidth products are on the order of 0.4 – 0.5.

Fig. 3
Fig. 3

Signal and idler power dependencies on the OPA pump power (a). A nearly linear relation of signal, idler power, and pump power is shown. Up to 78% photon conversion efficiency is achieved at 1400 nm. Note that the seed and idler power denote the bare generated power, i.e., no seed power is included in these values. Figure (b) depicts the long term average power stability at 1400 nm without active stabilization, which reaches 0.1 % RMS in 45 min, and the corresponding spectral properties. The central frequency exhibits a standard deviation of 24.2pm RMS, whereas the bandwidth varies by 12.7pm RMS. The corresponding shot-to-shot stability is 0.6%, limited by detection electronics (c). Figure (d) shows the collimated idler beam profile at 3500nm at 400mW. Minor changes may occur at other wavelengths and slight deformations may occur near the maximum output power of about 1W.

Fig. 4
Fig. 4

Signal power dependence on seed power at constant pump power. The seed power has been attenuated by several neutral density filters. Figure (a) shows the signal power as a function of seed power for pump powers of 1 to 6W. Due to a high and nearly constant photon conversion efficiency the signal power saturates at extremely low seed power. Figure (b) displays the same measurement for 1750nm. The seed power required to drive the OPA into saturation is depicted in Fig. (c) as a function of the applied pump power. Further details concerning the calculation are given in the main text. Figure (d) shows the single pass gain at different wavelengths by applying a seed power of 18mW that drives the OPA into saturation. This is shown for 1W, 2W, and 3W pump power.

Metrics