Abstract

The recently-developed optimized binary compressive detection (OB-CD) strategy has been shown to be capable of using Raman spectral signatures to rapidly classify and quantify liquid samples and to image solid samples. Here we demonstrate that OB-CD can also be used to quantitatively separate Raman and fluorescence features, and thus facilitate Raman-based chemical analyses in the presence of fluorescence background. More specifically, we describe a general strategy for fitting and suppressing fluorescence background using OB-CD filters trained on third-degree Bernstein polynomials. We present results that demonstrate the utility of this strategy by comparing classification and quantitation results obtained from liquids and powdered mixtures, both with and without fluorescence. Our results demonstrate high-speed Raman-based quantitation in the presence of moderate fluorescence. Moreover, we show that this OB-CD based method is effective in suppressing fluorescence of variable shape, as well as fluorescence that changes during the measurement process, as a result of photobleaching.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy

Zachary J. Smith, Sven Strombom, and Sebastian Wachsmann-Hogiu
Opt. Express 19(18) 16950-16962 (2011)

Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy

Michael Mazilu, Anna Chiara De Luca, Andrew Riches, C. Simon Herrington, and Kishan Dholakia
Opt. Express 18(11) 11382-11395 (2010)

Raman spectroscopy: techniques and applications in the life sciences

Dustin W. Shipp, Faris Sinjab, and Ioan Notingher
Adv. Opt. Photon. 9(2) 315-428 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
    [Crossref]
  2. A. M. K. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy,” Opt. Lett. 27, 2004–2006 (2002).
    [Crossref]
  3. O. O. Soyemi, F. G. Haiback, P. J. Gemperline, and M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectros. 56, 477–487 (2002).
    [Crossref]
  4. M. F. Duarte, M. A. Davenport, D. Tarkhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–101 (2008).
    [Crossref]
  5. W. C. Sweatt, C. A. A. Boye, S. M. Gentry, M. R. Descour, B. R. Stallard, and C. L. Grotbeck, “ISIS: an information-efficient spectral imaging system,” Proc. SPIE 3438, 98–106 (1998).
    [Crossref]
  6. N. Uzunbajakava, P. de Peinder, G. W. t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
    [Crossref] [PubMed]
  7. J. E. Vornehm, A. J. Dong, R. W. Boyd, and Z. Shi, “Multiple-output multivariate optical computing for spectrum recognition,” Opt. Express 21, 25005–25014 (2014).
    [Crossref]
  8. D. S. Wilcox, G. T. Buzzard, B. J. Lucier, P. Wang, and D. Ben-Amotz, “Photon level chemical classification using digital compressive detection,” Anal. Chim. Acta 755, 17–27 (2012).
    [Crossref] [PubMed]
  9. D. S. Wilcox, G. T. Buzzard, B. J. Lucier, O. G. Rehrauer, P. Wang, and D. Ben-Amotz, “Digital compressive chemical quantitation and hyperspectral imaging,” Analyst 138, 4982–4990 (2013).
    [Crossref] [PubMed]
  10. G. T. Buzzard and B. J. Lucier, “Optimal filters for high-speed compressive detection in spectroscopy,” Proc. SPIE 8657, 865707 (2013).
    [Crossref]
  11. J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61, 1225–1232 (2007).
    [Crossref] [PubMed]
  12. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363–1367 (2003).
    [Crossref] [PubMed]
  13. D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafasttime gated charge coupled device camera,” Rev. Sci. Instrum. 75630–635 (2004).
    [Crossref]
  14. N. Everall, R. W. Jackson, J. Howard, and K. Hutchinson, “Fluorescence rejection in Raman spectroscopy using a gated intensified diode array detector,” J. Raman Spectrosc. 17415–423 (1986).
    [Crossref]
  15. N. J. Everall, J. P. Partanen, J. R.M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64393–397 (1987).
    [Crossref]
  16. D. Zhang and D. Ben-Amotz, “Enhanced chemical classification of Raman images in the presence of strong fluorescence interference,” Appl. Spectrosc. 541379–1383 (2000).
    [Crossref]
  17. F. Pukelsheim, Optimal design of experiments, (John Wiley & Sons Inc.1993).
  18. A. C. Atkinson, A. N. Donev, and R. D. Tobias, Optimum experimental designs with SAS, (Oxford University Press, 2007).
  19. K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” BBA - Biomembranes 1758, 868–873 (2006).
    [Crossref] [PubMed]
  20. S. Bernstein, “Demonstration du theoreme de weierstrass fondee sur le calcul des probabilities,” Comm. Soc. Math. Kharkov 13, 1–2 (1912).
  21. R. T. Farouki, “The Bernstein polynomial basis: a centennial retrospective,” Comput. Aided Geom. Design 29, 379–419 (2012).
    [Crossref]
  22. C. Frausto-Reyes, C. Medina-Gutiérrez, R. Sato-Berrú, and L. R. Sahagún, “Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis,” Spectrochim. Acta A 61, 2657–2662 (2005).
    [Crossref]
  23. R. Sato-Berrú, J. Medina-Valtierra, C. Medina-Gutiérrez, and C. Frausto-Reyes, “Quantitative NIR Raman analysis in liquid mixtures,” Spectrochim. Acta A 60, 2225–2229 (2004).
    [Crossref]

2014 (1)

J. E. Vornehm, A. J. Dong, R. W. Boyd, and Z. Shi, “Multiple-output multivariate optical computing for spectrum recognition,” Opt. Express 21, 25005–25014 (2014).
[Crossref]

2013 (2)

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, O. G. Rehrauer, P. Wang, and D. Ben-Amotz, “Digital compressive chemical quantitation and hyperspectral imaging,” Analyst 138, 4982–4990 (2013).
[Crossref] [PubMed]

G. T. Buzzard and B. J. Lucier, “Optimal filters for high-speed compressive detection in spectroscopy,” Proc. SPIE 8657, 865707 (2013).
[Crossref]

2012 (2)

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, P. Wang, and D. Ben-Amotz, “Photon level chemical classification using digital compressive detection,” Anal. Chim. Acta 755, 17–27 (2012).
[Crossref] [PubMed]

R. T. Farouki, “The Bernstein polynomial basis: a centennial retrospective,” Comput. Aided Geom. Design 29, 379–419 (2012).
[Crossref]

2008 (1)

M. F. Duarte, M. A. Davenport, D. Tarkhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–101 (2008).
[Crossref]

2007 (1)

2006 (3)

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

N. Uzunbajakava, P. de Peinder, G. W. t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[Crossref] [PubMed]

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” BBA - Biomembranes 1758, 868–873 (2006).
[Crossref] [PubMed]

2005 (1)

C. Frausto-Reyes, C. Medina-Gutiérrez, R. Sato-Berrú, and L. R. Sahagún, “Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis,” Spectrochim. Acta A 61, 2657–2662 (2005).
[Crossref]

2004 (2)

R. Sato-Berrú, J. Medina-Valtierra, C. Medina-Gutiérrez, and C. Frausto-Reyes, “Quantitative NIR Raman analysis in liquid mixtures,” Spectrochim. Acta A 60, 2225–2229 (2004).
[Crossref]

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafasttime gated charge coupled device camera,” Rev. Sci. Instrum. 75630–635 (2004).
[Crossref]

2003 (1)

2002 (2)

A. M. K. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy,” Opt. Lett. 27, 2004–2006 (2002).
[Crossref]

O. O. Soyemi, F. G. Haiback, P. J. Gemperline, and M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectros. 56, 477–487 (2002).
[Crossref]

2000 (1)

1998 (1)

W. C. Sweatt, C. A. A. Boye, S. M. Gentry, M. R. Descour, B. R. Stallard, and C. L. Grotbeck, “ISIS: an information-efficient spectral imaging system,” Proc. SPIE 3438, 98–106 (1998).
[Crossref]

1987 (1)

N. J. Everall, J. P. Partanen, J. R.M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64393–397 (1987).
[Crossref]

1986 (1)

N. Everall, R. W. Jackson, J. Howard, and K. Hutchinson, “Fluorescence rejection in Raman spectroscopy using a gated intensified diode array detector,” J. Raman Spectrosc. 17415–423 (1986).
[Crossref]

1912 (1)

S. Bernstein, “Demonstration du theoreme de weierstrass fondee sur le calcul des probabilities,” Comm. Soc. Math. Kharkov 13, 1–2 (1912).

Ahuja, R. C.

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafasttime gated charge coupled device camera,” Rev. Sci. Instrum. 75630–635 (2004).
[Crossref]

Atkinson, A. C.

A. C. Atkinson, A. N. Donev, and R. D. Tobias, Optimum experimental designs with SAS, (Oxford University Press, 2007).

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Tarkhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–101 (2008).
[Crossref]

Barr, J. R.M.

N. J. Everall, J. P. Partanen, J. R.M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64393–397 (1987).
[Crossref]

Ben-Amotz, D.

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, O. G. Rehrauer, P. Wang, and D. Ben-Amotz, “Digital compressive chemical quantitation and hyperspectral imaging,” Analyst 138, 4982–4990 (2013).
[Crossref] [PubMed]

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, P. Wang, and D. Ben-Amotz, “Photon level chemical classification using digital compressive detection,” Anal. Chim. Acta 755, 17–27 (2012).
[Crossref] [PubMed]

D. Zhang and D. Ben-Amotz, “Enhanced chemical classification of Raman images in the presence of strong fluorescence interference,” Appl. Spectrosc. 541379–1383 (2000).
[Crossref]

Bernstein, S.

S. Bernstein, “Demonstration du theoreme de weierstrass fondee sur le calcul des probabilities,” Comm. Soc. Math. Kharkov 13, 1–2 (1912).

Boyd, R. W.

J. E. Vornehm, A. J. Dong, R. W. Boyd, and Z. Shi, “Multiple-output multivariate optical computing for spectrum recognition,” Opt. Express 21, 25005–25014 (2014).
[Crossref]

Boye, C. A. A.

W. C. Sweatt, C. A. A. Boye, S. M. Gentry, M. R. Descour, B. R. Stallard, and C. L. Grotbeck, “ISIS: an information-efficient spectral imaging system,” Proc. SPIE 3438, 98–106 (1998).
[Crossref]

Buzzard, G. T.

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, O. G. Rehrauer, P. Wang, and D. Ben-Amotz, “Digital compressive chemical quantitation and hyperspectral imaging,” Analyst 138, 4982–4990 (2013).
[Crossref] [PubMed]

G. T. Buzzard and B. J. Lucier, “Optimal filters for high-speed compressive detection in spectroscopy,” Proc. SPIE 8657, 865707 (2013).
[Crossref]

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, P. Wang, and D. Ben-Amotz, “Photon level chemical classification using digital compressive detection,” Anal. Chim. Acta 755, 17–27 (2012).
[Crossref] [PubMed]

Callender, A. F.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” BBA - Biomembranes 1758, 868–873 (2006).
[Crossref] [PubMed]

Chan, J. W.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Tarkhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–101 (2008).
[Crossref]

de Peinder, P.

N. Uzunbajakava, P. de Peinder, G. W. t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[Crossref] [PubMed]

Descour, M. R.

W. C. Sweatt, C. A. A. Boye, S. M. Gentry, M. R. Descour, B. R. Stallard, and C. L. Grotbeck, “ISIS: an information-efficient spectral imaging system,” Proc. SPIE 3438, 98–106 (1998).
[Crossref]

Donev, A. N.

A. C. Atkinson, A. N. Donev, and R. D. Tobias, Optimum experimental designs with SAS, (Oxford University Press, 2007).

Dong, A. J.

J. E. Vornehm, A. J. Dong, R. W. Boyd, and Z. Shi, “Multiple-output multivariate optical computing for spectrum recognition,” Opt. Express 21, 25005–25014 (2014).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Tarkhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–101 (2008).
[Crossref]

Enejder, A. M. K.

Everall, N.

N. Everall, R. W. Jackson, J. Howard, and K. Hutchinson, “Fluorescence rejection in Raman spectroscopy using a gated intensified diode array detector,” J. Raman Spectrosc. 17415–423 (1986).
[Crossref]

Everall, N. J.

N. J. Everall, J. P. Partanen, J. R.M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64393–397 (1987).
[Crossref]

Farouki, R. T.

R. T. Farouki, “The Bernstein polynomial basis: a centennial retrospective,” Comput. Aided Geom. Design 29, 379–419 (2012).
[Crossref]

Feld, M. S.

Frausto-Reyes, C.

C. Frausto-Reyes, C. Medina-Gutiérrez, R. Sato-Berrú, and L. R. Sahagún, “Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis,” Spectrochim. Acta A 61, 2657–2662 (2005).
[Crossref]

R. Sato-Berrú, J. Medina-Valtierra, C. Medina-Gutiérrez, and C. Frausto-Reyes, “Quantitative NIR Raman analysis in liquid mixtures,” Spectrochim. Acta A 60, 2225–2229 (2004).
[Crossref]

Gemperline, P. J.

O. O. Soyemi, F. G. Haiback, P. J. Gemperline, and M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectros. 56, 477–487 (2002).
[Crossref]

Gentry, S. M.

W. C. Sweatt, C. A. A. Boye, S. M. Gentry, M. R. Descour, B. R. Stallard, and C. L. Grotbeck, “ISIS: an information-efficient spectral imaging system,” Proc. SPIE 3438, 98–106 (1998).
[Crossref]

Golcuk, K.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” BBA - Biomembranes 1758, 868–873 (2006).
[Crossref] [PubMed]

Grotbeck, C. L.

W. C. Sweatt, C. A. A. Boye, S. M. Gentry, M. R. Descour, B. R. Stallard, and C. L. Grotbeck, “ISIS: an information-efficient spectral imaging system,” Proc. SPIE 3438, 98–106 (1998).
[Crossref]

Haiback, F. G.

O. O. Soyemi, F. G. Haiback, P. J. Gemperline, and M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectros. 56, 477–487 (2002).
[Crossref]

Hooft, G. W. t

N. Uzunbajakava, P. de Peinder, G. W. t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[Crossref] [PubMed]

Horowitz, G. L.

Howard, J.

N. Everall, R. W. Jackson, J. Howard, and K. Hutchinson, “Fluorescence rejection in Raman spectroscopy using a gated intensified diode array detector,” J. Raman Spectrosc. 17415–423 (1986).
[Crossref]

Hunter, M.

Huser, T.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

Hutchinson, K.

N. Everall, R. W. Jackson, J. Howard, and K. Hutchinson, “Fluorescence rejection in Raman spectroscopy using a gated intensified diode array detector,” J. Raman Spectrosc. 17415–423 (1986).
[Crossref]

Ihara, K.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

Jackson, R. W.

N. Everall, R. W. Jackson, J. Howard, and K. Hutchinson, “Fluorescence rejection in Raman spectroscopy using a gated intensified diode array detector,” J. Raman Spectrosc. 17415–423 (1986).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Tarkhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–101 (2008).
[Crossref]

Kohn, D. H.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” BBA - Biomembranes 1758, 868–873 (2006).
[Crossref] [PubMed]

Koo, T.-W.

Kudriavtsev, A.

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafasttime gated charge coupled device camera,” Rev. Sci. Instrum. 75630–635 (2004).
[Crossref]

Lane, S. M.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Tarkhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–101 (2008).
[Crossref]

Lieber, C. A.

Lucier, B. J.

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, O. G. Rehrauer, P. Wang, and D. Ben-Amotz, “Digital compressive chemical quantitation and hyperspectral imaging,” Analyst 138, 4982–4990 (2013).
[Crossref] [PubMed]

G. T. Buzzard and B. J. Lucier, “Optimal filters for high-speed compressive detection in spectroscopy,” Proc. SPIE 8657, 865707 (2013).
[Crossref]

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, P. Wang, and D. Ben-Amotz, “Photon level chemical classification using digital compressive detection,” Anal. Chim. Acta 755, 17–27 (2012).
[Crossref] [PubMed]

Lui, H.

Mahadevan-Jansen, A.

Mandair, G. S.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” BBA - Biomembranes 1758, 868–873 (2006).
[Crossref] [PubMed]

Martyshkin, D. V.

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafasttime gated charge coupled device camera,” Rev. Sci. Instrum. 75630–635 (2004).
[Crossref]

McLean, D. I.

Medina-Gutiérrez, C.

C. Frausto-Reyes, C. Medina-Gutiérrez, R. Sato-Berrú, and L. R. Sahagún, “Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis,” Spectrochim. Acta A 61, 2657–2662 (2005).
[Crossref]

R. Sato-Berrú, J. Medina-Valtierra, C. Medina-Gutiérrez, and C. Frausto-Reyes, “Quantitative NIR Raman analysis in liquid mixtures,” Spectrochim. Acta A 60, 2225–2229 (2004).
[Crossref]

Medina-Valtierra, J.

R. Sato-Berrú, J. Medina-Valtierra, C. Medina-Gutiérrez, and C. Frausto-Reyes, “Quantitative NIR Raman analysis in liquid mixtures,” Spectrochim. Acta A 60, 2225–2229 (2004).
[Crossref]

Mirov, S. B.

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafasttime gated charge coupled device camera,” Rev. Sci. Instrum. 75630–635 (2004).
[Crossref]

Morris, M. D.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” BBA - Biomembranes 1758, 868–873 (2006).
[Crossref] [PubMed]

Myrick, M. L.

O. O. Soyemi, F. G. Haiback, P. J. Gemperline, and M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectros. 56, 477–487 (2002).
[Crossref]

Oh, J.

Partanen, J. P.

N. J. Everall, J. P. Partanen, J. R.M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64393–397 (1987).
[Crossref]

Pukelsheim, F.

F. Pukelsheim, Optimal design of experiments, (John Wiley & Sons Inc.1993).

Rehrauer, O. G.

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, O. G. Rehrauer, P. Wang, and D. Ben-Amotz, “Digital compressive chemical quantitation and hyperspectral imaging,” Analyst 138, 4982–4990 (2013).
[Crossref] [PubMed]

Sahagún, L. R.

C. Frausto-Reyes, C. Medina-Gutiérrez, R. Sato-Berrú, and L. R. Sahagún, “Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis,” Spectrochim. Acta A 61, 2657–2662 (2005).
[Crossref]

Sahar, N.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” BBA - Biomembranes 1758, 868–873 (2006).
[Crossref] [PubMed]

Sasic, S.

Sato-Berrú, R.

C. Frausto-Reyes, C. Medina-Gutiérrez, R. Sato-Berrú, and L. R. Sahagún, “Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis,” Spectrochim. Acta A 61, 2657–2662 (2005).
[Crossref]

R. Sato-Berrú, J. Medina-Valtierra, C. Medina-Gutiérrez, and C. Frausto-Reyes, “Quantitative NIR Raman analysis in liquid mixtures,” Spectrochim. Acta A 60, 2225–2229 (2004).
[Crossref]

Shaw, M. J.

N. J. Everall, J. P. Partanen, J. R.M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64393–397 (1987).
[Crossref]

Shi, Z.

J. E. Vornehm, A. J. Dong, R. W. Boyd, and Z. Shi, “Multiple-output multivariate optical computing for spectrum recognition,” Opt. Express 21, 25005–25014 (2014).
[Crossref]

Soyemi, O. O.

O. O. Soyemi, F. G. Haiback, P. J. Gemperline, and M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectros. 56, 477–487 (2002).
[Crossref]

Stallard, B. R.

W. C. Sweatt, C. A. A. Boye, S. M. Gentry, M. R. Descour, B. R. Stallard, and C. L. Grotbeck, “ISIS: an information-efficient spectral imaging system,” Proc. SPIE 3438, 98–106 (1998).
[Crossref]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Tarkhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–101 (2008).
[Crossref]

Sweatt, W. C.

W. C. Sweatt, C. A. A. Boye, S. M. Gentry, M. R. Descour, B. R. Stallard, and C. L. Grotbeck, “ISIS: an information-efficient spectral imaging system,” Proc. SPIE 3438, 98–106 (1998).
[Crossref]

Tarkhar, D.

M. F. Duarte, M. A. Davenport, D. Tarkhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–101 (2008).
[Crossref]

Taylor, D. S.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

Tobias, R. D.

A. C. Atkinson, A. N. Donev, and R. D. Tobias, Optimum experimental designs with SAS, (Oxford University Press, 2007).

Uzunbajakava, N.

N. Uzunbajakava, P. de Peinder, G. W. t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[Crossref] [PubMed]

van Gogh, A. T. M.

N. Uzunbajakava, P. de Peinder, G. W. t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[Crossref] [PubMed]

Vornehm, J. E.

J. E. Vornehm, A. J. Dong, R. W. Boyd, and Z. Shi, “Multiple-output multivariate optical computing for spectrum recognition,” Opt. Express 21, 25005–25014 (2014).
[Crossref]

Wang, P.

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, O. G. Rehrauer, P. Wang, and D. Ben-Amotz, “Digital compressive chemical quantitation and hyperspectral imaging,” Analyst 138, 4982–4990 (2013).
[Crossref] [PubMed]

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, P. Wang, and D. Ben-Amotz, “Photon level chemical classification using digital compressive detection,” Anal. Chim. Acta 755, 17–27 (2012).
[Crossref] [PubMed]

Wilcox, D. S.

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, O. G. Rehrauer, P. Wang, and D. Ben-Amotz, “Digital compressive chemical quantitation and hyperspectral imaging,” Analyst 138, 4982–4990 (2013).
[Crossref] [PubMed]

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, P. Wang, and D. Ben-Amotz, “Photon level chemical classification using digital compressive detection,” Anal. Chim. Acta 755, 17–27 (2012).
[Crossref] [PubMed]

Zeng, H.

Zhang, D.

Zhao, J.

Zwerdling, T.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

Anal. Chem. (1)

N. Uzunbajakava, P. de Peinder, G. W. t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, P. Wang, and D. Ben-Amotz, “Photon level chemical classification using digital compressive detection,” Anal. Chim. Acta 755, 17–27 (2012).
[Crossref] [PubMed]

Analyst (1)

D. S. Wilcox, G. T. Buzzard, B. J. Lucier, O. G. Rehrauer, P. Wang, and D. Ben-Amotz, “Digital compressive chemical quantitation and hyperspectral imaging,” Analyst 138, 4982–4990 (2013).
[Crossref] [PubMed]

Appl. Spectros. (1)

O. O. Soyemi, F. G. Haiback, P. J. Gemperline, and M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectros. 56, 477–487 (2002).
[Crossref]

Appl. Spectrosc. (3)

BBA - Biomembranes (1)

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” BBA - Biomembranes 1758, 868–873 (2006).
[Crossref] [PubMed]

Biophys. J. (1)

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

Comm. Soc. Math. Kharkov (1)

S. Bernstein, “Demonstration du theoreme de weierstrass fondee sur le calcul des probabilities,” Comm. Soc. Math. Kharkov 13, 1–2 (1912).

Comput. Aided Geom. Design (1)

R. T. Farouki, “The Bernstein polynomial basis: a centennial retrospective,” Comput. Aided Geom. Design 29, 379–419 (2012).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Tarkhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–101 (2008).
[Crossref]

J. Raman Spectrosc. (1)

N. Everall, R. W. Jackson, J. Howard, and K. Hutchinson, “Fluorescence rejection in Raman spectroscopy using a gated intensified diode array detector,” J. Raman Spectrosc. 17415–423 (1986).
[Crossref]

Opt. Commun. (1)

N. J. Everall, J. P. Partanen, J. R.M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64393–397 (1987).
[Crossref]

Opt. Express (1)

J. E. Vornehm, A. J. Dong, R. W. Boyd, and Z. Shi, “Multiple-output multivariate optical computing for spectrum recognition,” Opt. Express 21, 25005–25014 (2014).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

W. C. Sweatt, C. A. A. Boye, S. M. Gentry, M. R. Descour, B. R. Stallard, and C. L. Grotbeck, “ISIS: an information-efficient spectral imaging system,” Proc. SPIE 3438, 98–106 (1998).
[Crossref]

G. T. Buzzard and B. J. Lucier, “Optimal filters for high-speed compressive detection in spectroscopy,” Proc. SPIE 8657, 865707 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafasttime gated charge coupled device camera,” Rev. Sci. Instrum. 75630–635 (2004).
[Crossref]

Spectrochim. Acta A (2)

C. Frausto-Reyes, C. Medina-Gutiérrez, R. Sato-Berrú, and L. R. Sahagún, “Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis,” Spectrochim. Acta A 61, 2657–2662 (2005).
[Crossref]

R. Sato-Berrú, J. Medina-Valtierra, C. Medina-Gutiérrez, and C. Frausto-Reyes, “Quantitative NIR Raman analysis in liquid mixtures,” Spectrochim. Acta A 60, 2225–2229 (2004).
[Crossref]

Other (2)

F. Pukelsheim, Optimal design of experiments, (John Wiley & Sons Inc.1993).

A. C. Atkinson, A. N. Donev, and R. D. Tobias, Optimum experimental designs with SAS, (Oxford University Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Plot of the four degree-three Bernstein polynomials as a function of wavelength channel (scaled to be over the interval [0, 1].) The colors denote the various polynomials: black, B3,0(x); blue, B3,1(x); green, B3,2(x); and red, B3,3(x).

Fig. 2
Fig. 2

Schematic of the OB-CD Raman system based upon a 514 nm laser excitation source.

Fig. 3
Fig. 3

The colored curves are training spectra (each normalized to unit area) and the gray bands indicate regions in which the OB-CD filters are on (i.e., direct light towards the detector). The Raman spectra were obtained with a spectral resolution of 30 cm−1. The lines labeled Tkk correspond to the fraction of the total measurement time that data is collected using the filter associated with each spectral component (denoted by color). The OB-CD filter and Tkk results on the left were obtained without considering any components to be nuisance spectra, while those on the right were obtained when considering the NIR objective and Bernstein polynomials to be nuisance spectra.

Fig. 4
Fig. 4

Recovered Raman rates for hexane (blue) and methylyclohexane (red) generated using OB-CD filters that considered components of the training set to be nuisance spectra (dark blue and dark red) and OB-CD filters that considered the spectral component arising from the NIR objective and the four Bernstein polynomials to be nuisance spectra (light blue and light red). In all cases, 1,000 OB-CD measurements were taken with a total integration time of 10 ms. The ellipses represent the 95% confidence interval of the recovered Rates for each sample. The large markers in the center of each ellipse represent the mean recovered Raman rates.

Fig. 5
Fig. 5

Plot of hexane (blue) and methylcyclohexane (red) recovered Raman rates measured without added white light versus recovered Raman rates measured with added white light on the (a) 785 nm laser excitation system and (b) 514 nm laser excitation system. Rates have each been corrected by removing a small constant vertical offset (modeling error) whose magnitude was determined by measuring the apparent recovered Raman rates obtained in measurements performed on white light without Raman. The magnitude of this correction is represented by the colored bars in the upper left of each plot. Each point represents the means of 1,000 measurements (each obtained using a 30 ms total integration time) with error bars representing 1 standard deviation. Top axis denotes the ratio of the total (integrated) number of the white light/Raman photons. The inset spectra were obtained from hexane with and without added white light with 1 OD neutral density filter and correspond to measurements made at the points denoted by the arrows.

Fig. 6
Fig. 6

(a) Spectra of distilled aniline (orange), toluene (magenta), fluorescent aniline (green), a 47:53 volume-by-volume mixture of distilled aniline and toluene (dark green), and a 52:48 mixture of fluorescent aniline and toluene (cyan) measured on the 785 nm OB-CD system. (b) Apparent volume fractions of distilled aniline (orange), toluene (magenta), fluorescent aniline (green), a 47:53 volume-by-volume mixture of distilled aniline and toluene (dark green), and a 52:48 mixture of fluorescent aniline and toluene (cyan). Each chemical was sampled 1,000 times at 20 ms per experiment. Ellipses correspond to the 95% confidence interval of the recovered rates for each sample. The large squares with black borders in the center of each ellipse represent the mean of each sample.

Fig. 7
Fig. 7

(a) Spectra of water (blue), ethanol (red), Arandas brand silver tequila (gray), and Casamigos brand golden tequila (dark yellow) measured on the 514 nm OB-CD system (b) Apparent volume fractions of water (blue), ethanol (red), silver tequila (gray), and golden tequila (dark yellow) are compared with the nominal volume fractions (as obtained from the label on the tequila bottles). Each chemical was sampled 1,000 times at 100 ms per OB-CD measurement. Ellipses correspond to the 95% confidence interval of the recovered rates for each sample. Large squares with black borders represent the mean of each sample. The dashed line corresponds to line with slope 1. Inset table reports the mean apparent volume fraction of ethanol (plus/minus 1 standard deviation) for each sample and then, parenthetically, the label ethanol volume percentage for each sample.

Fig. 8
Fig. 8

The measured spectra of a cellulose acetate overhead transparency are plotted before photobleaching (red) and after 20 minutes of photobleaching (green). The output of the polynomial baseline subtraction is also plotted (blue).

Fig. 9
Fig. 9

Images showing the recovered Raman (yellow) and fluorescence (cyan) rates of a cellulose acetate overhead transparency before (images on the left) and after (images on the right) photobleaching a “+” pattern into the center of the imaged area. All images were collected with an integration time of 10 ms per pixel. The circular nature of these images arises from the field of view of the objective, as the images were obtained by raster-scanning the angle of the laser as it enters the back of the objective (while remaining centered in the objective).

Fig. 10
Fig. 10

Area-normalized spectra plotted against Raman shift frequency (wavenumber) shown here pertain to results obtained using a 785 nm and 514 nm excitation laser as noted above each subfigure. Note that the 785 nm spectra were measured with a resolution of 30 cm−1 and the 514 nm spectra were measured with a resolution of 12 cm−1. Unless otherwise noted, the spectral component arising from the NIR objective and the Bernstein polynomials were always considered nuisance spectra. (a) Spectra and the resulting OB-CD filters for (in order from top down): n-hexane, methylcyclohexane, the spectral component arising from the NIR objective and the four degree-three Bernstein polynomials. The fraction of the total measurement time that each filter was collecting was 0.385, 0.219, 0.055, 0.034, 0.268, 0.031, and 0.009, respectively. (b) Spectra and the resulting OB-CD filters for (in order from top down): n-hexane, methylcyclohexane, and the four degree-three Bernstein polynomials. The fraction of the total measurement time that each filter was collecting was 0.248, 0.388, 0.010, 0.032, 0.277 and 0.045, respectively. (c) Spectra and the resulting OB-CD filters for (in order from top down): aniline, toluene, spectral component arising from the NIR objective, and the four degree-three Bernstein polynomials. The fraction of the total measurement time that each filter was collecting was 0.484, 0.265, 0.025, 0.003, 0.154, 0.059 and 0.010, respectively. (d) Spectra and the resulting OB-CD filters for (in order from top down): ethanol, water, and the four degree-three Bernstein polynomials. The fraction of the total measurement time that each filter was collecting was 0.276, 0.261, 0.027, 0.116, 0.232, and 0.088, respectively. (e) Spectra and the resulting OB-CD filters for (in order from top down): Raman features of the plastic film, the spectral component arising from the NIR objective, and the four degree-three Bernstein polynomials. The fraction of the total measurement time that each filter was collecting was 0.099, 0.210, 0.099, 0.271, 0.212, and 0.109, respectively. No components were considered nuisance spectra, as we wanted to accurately estimate the intensity of the fluorescence before and after photobleaching.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T k k i = 1 N F i k ( j = 1 n P i j Λ j ) = T k k i = 1 N j = 1 n F i k P i j Λ j .
E ( | ( B T 1 x ) j Λ j | 2 ) = k = 1 m b j k 2 T k k 1 ( F T P Λ ) k .
E ( B T 1 x Λ 2 ) = j = 1 m k = 1 m b j k 2 T k k 1 ( F T P Λ ) k = k = 1 m ( ( F T P ) Λ ) k T k k B e k 2 .
E ( B T 1 x Λ ¯ 2 ) = k = 1 m ( ( F T P ) Λ ¯ ) k T k k B e k 2
j = 1 n E ( | ( B T 1 x ) j Λ ¯ j | 2 ) = j = 1 n k = 1 m b j k 2 T k k 1 ( F T P Λ ¯ ) k .
B ν , r ( x ) = ( r ν ) x ν ( 1 x ) r ν , ν = 0 , 1 , , r ,
χ i = w i Λ ^ i i w i Λ ^ i ,
Φ i = M i χ i i M i χ i .

Metrics