Abstract

Super-resolution localization microscopy involves acquiring thousands of image frames of sparse collections of single molecules in the sample. The long acquisition time makes the imaging setup prone to drift, affecting accuracy and precision. Localization accuracy is generally improved by a posteriori drift correction. However, localization precision lost due to sample drifting out of focus cannot be recovered as the signal is originally detected at a lower peak signal. Here, we demonstrate a method of stabilizing a super-resolution localization microscope in three dimensions for extended periods of time with nanometer precision. Hence, no localization correction after the experiment is required to obtain super-resolved reconstructions. The method incorporates a closed-loop with a feedback signal generated from camera images and actuation on a 3D nanopositioning stage holding the sample.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time 3D stabilization of a super-resolution microscope using an electrically tunable lens

Reza Tafteh, Libin Abraham, Denny Seo, Henry Y. Lu, Michael R. Gold, and Keng C. Chou
Opt. Express 24(20) 22959-22970 (2016)

Using fixed fiduciary markers for stage drift correction

Sang Hak Lee, Murat Baday, Marco Tjioe, Paul D. Simonson, Ruobing Zhang, En Cai, and Paul R. Selvin
Opt. Express 20(11) 12177-12183 (2012)

Sample drift correction in 3D fluorescence photoactivation localization microscopy

Michael J. Mlodzianoski, John M. Schreiner, Steven P. Callahan, Katarina Smolková, Andrea Dlasková, Jitka Šantorová, Petr Ježek, and Joerg Bewersdorf
Opt. Express 19(16) 15009-15019 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  2. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  4. M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
    [Crossref] [PubMed]
  5. A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
    [Crossref] [PubMed]
  6. K. Xu, G. Zhong, and X. Zhuang, “Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons,” Science 339(6118), 452–456 (2013).
    [Crossref] [PubMed]
  7. G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
    [Crossref] [PubMed]
  8. Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
    [Crossref] [PubMed]
  9. S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
    [Crossref] [PubMed]
  10. F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express 2(5), 1377–1393 (2011).
    [Crossref] [PubMed]
  11. S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
    [Crossref] [PubMed]
  12. S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
    [Crossref] [PubMed]
  13. A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci. Rep. 4, 5388 (2014).
    [Crossref] [PubMed]
  14. J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9(12), 1181–1184 (2012).
    [Crossref] [PubMed]
  15. S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, and X. Zhuang, “Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(23), 8452–8457 (2014).
    [Crossref] [PubMed]
  16. F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
    [Crossref] [PubMed]
  17. S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
    [Crossref] [PubMed]
  18. J. Silfies, E. Lieser, S. Schwartz, and M. Davidson, “Correcting Focus Drift in Live-Cell Microscopy,” http://www.microscopyu.com/articles/livecellimaging/focusdrift.html .
  19. R. McGorty, D. Kamiyama, and B. Huang, “Active microscope stabilization in three dimensions using image correlation,” Opt. Nanoscopy 2(1), 3 (2013).
    [Crossref] [PubMed]
  20. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt. 46(3), 421–427 (2007).
    [Crossref] [PubMed]
  21. G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
    [Crossref]
  22. M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
    [Crossref]
  23. A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466(7306), 647–651 (2010).
    [Crossref] [PubMed]
  24. S. H. Lee, M. Baday, M. Tjioe, P. D. Simonson, R. Zhang, E. Cai, and P. R. Selvin, “Using fixed fiduciary markers for stage drift correction,” Opt. Express 20(11), 12177–12183 (2012).
    [Crossref] [PubMed]
  25. G. Grover, “Computational-Optical Microscopy for 3D Biological Imaging Beyond the Diffraction Limit.” Ph.D. Dissertation, University of Colorado at Boulder, Boulder, CO, USA. Advisor: Rafael Piestun (2013).
  26. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
    [Crossref] [PubMed]
  27. C. Geisler, T. Hotz, A. Schönle, S. W. Hell, A. Munk, and A. Egner, “Drift estimation for single marker switching based imaging schemes,” Opt. Express 20(7), 7274–7289 (2012).
    [Crossref] [PubMed]
  28. M. J. Mlodzianoski, J. M. Schreiner, S. P. Callahan, K. Smolková, A. Dlasková, J. Santorová, P. Ježek, and J. Bewersdorf, “Sample drift correction in 3D fluorescence photoactivation localization microscopy,” Opt. Express 19(16), 15009–15019 (2011).
    [Crossref] [PubMed]
  29. Y. Wang, J. Schnitzbauer, Z. Hu, X. Li, Y. Cheng, Z.-L. Huang, and B. Huang, “Localization events-based sample drift correction for localization microscopy with redundant cross-correlation algorithm,” Opt. Express 22(13), 15982–15991 (2014).
    [Crossref] [PubMed]
  30. A. D. Greengard, “Three dimensional sensing and imaging using rotating pointspread functions,” Ph.D. Dissertation, Univrsity of Colorado, Boulder, CO, USA, Advisor: Rafael Piestun (2006).
  31. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
    [Crossref] [PubMed]
  32. X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
    [Crossref]
  33. A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, and J. Schmoranzer, “Multi-colour direct STORM with red emitting carbocyanines,” Biol. Cell 104(4), 229–237 (2012).
    [Crossref] [PubMed]
  34. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
    [Crossref]
  35. T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4(3), 188–193 (2010).
    [Crossref]

2014 (5)

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref] [PubMed]

A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci. Rep. 4, 5388 (2014).
[Crossref] [PubMed]

S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, and X. Zhuang, “Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(23), 8452–8457 (2014).
[Crossref] [PubMed]

Y. Wang, J. Schnitzbauer, Z. Hu, X. Li, Y. Cheng, Z.-L. Huang, and B. Huang, “Localization events-based sample drift correction for localization microscopy with redundant cross-correlation algorithm,” Opt. Express 22(13), 15982–15991 (2014).
[Crossref] [PubMed]

2013 (4)

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

R. McGorty, D. Kamiyama, and B. Huang, “Active microscope stabilization in three dimensions using image correlation,” Opt. Nanoscopy 2(1), 3 (2013).
[Crossref] [PubMed]

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

K. Xu, G. Zhong, and X. Zhuang, “Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons,” Science 339(6118), 452–456 (2013).
[Crossref] [PubMed]

2012 (7)

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
[Crossref] [PubMed]

S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
[Crossref] [PubMed]

J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9(12), 1181–1184 (2012).
[Crossref] [PubMed]

C. Geisler, T. Hotz, A. Schönle, S. W. Hell, A. Munk, and A. Egner, “Drift estimation for single marker switching based imaging schemes,” Opt. Express 20(7), 7274–7289 (2012).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Baday, M. Tjioe, P. D. Simonson, R. Zhang, E. Cai, and P. R. Selvin, “Using fixed fiduciary markers for stage drift correction,” Opt. Express 20(11), 12177–12183 (2012).
[Crossref] [PubMed]

A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, and J. Schmoranzer, “Multi-colour direct STORM with red emitting carbocyanines,” Biol. Cell 104(4), 229–237 (2012).
[Crossref] [PubMed]

2011 (4)

M. J. Mlodzianoski, J. M. Schreiner, S. P. Callahan, K. Smolková, A. Dlasková, J. Santorová, P. Ježek, and J. Bewersdorf, “Sample drift correction in 3D fluorescence photoactivation localization microscopy,” Opt. Express 19(16), 15009–15019 (2011).
[Crossref] [PubMed]

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
[Crossref] [PubMed]

F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express 2(5), 1377–1393 (2011).
[Crossref] [PubMed]

2010 (3)

A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466(7306), 647–651 (2010).
[Crossref] [PubMed]

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4(3), 188–193 (2010).
[Crossref]

2009 (2)

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
[Crossref]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

2006 (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

2005 (1)

M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
[Crossref]

Agrawal, A.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Alchenberger, D.

Backer, A. S.

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Backlund, M. P.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Baday, M.

Baird, M. A.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

Barsic, A.

A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci. Rep. 4, 5388 (2014).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bewersdorf, J.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

M. J. Mlodzianoski, J. M. Schreiner, S. P. Callahan, K. Smolková, A. Dlasková, J. Santorová, P. Ježek, and J. Bewersdorf, “Sample drift correction in 3D fluorescence photoactivation localization microscopy,” Opt. Express 19(16), 15009–15019 (2011).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Burnette, D. T.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
[Crossref] [PubMed]

Byars, J. M.

Cai, E.

Callahan, S. P.

Capitanio, M.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
[Crossref]

Carter, A. R.

Cheng, Y.

Chu, S.

A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466(7306), 647–651 (2010).
[Crossref] [PubMed]

Cicchi, R.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
[Crossref]

Cox, S.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
[Crossref] [PubMed]

Davidson, M. W.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

DeLuca, J.

DeLuca, K.

Dempsey, G. T.

S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, and X. Zhuang, “Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(23), 8452–8457 (2014).
[Crossref] [PubMed]

Dlasková, A.

Duim, W. C.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

Egner, A.

El-Sayed, M. A.

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

Fetter, R. D.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

Gahlmann, A.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

Galbraith, C. G.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

Galbraith, J. A.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

Geisler, C.

Gerke, T. D.

T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4(3), 188–193 (2010).
[Crossref]

Gillette, J. M.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Goodwin, P. M.

G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
[Crossref]

Greengard, A.

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
[Crossref]

Grover, G.

A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci. Rep. 4, 5388 (2014).
[Crossref] [PubMed]

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
[Crossref] [PubMed]

Halsey, W.

Hartwich, T. M. P.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

Haucke, V.

A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, and J. Schmoranzer, “Multi-colour direct STORM with red emitting carbocyanines,” Biol. Cell 104(4), 229–237 (2012).
[Crossref] [PubMed]

He, J.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Heilemann, M.

A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, and J. Schmoranzer, “Multi-colour direct STORM with red emitting carbocyanines,” Biol. Cell 104(4), 229–237 (2012).
[Crossref] [PubMed]

Heintzmann, R.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
[Crossref] [PubMed]

Hell, S. W.

Hess, H. F.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Hotz, T.

Hu, Z.

Huang, B.

Huang, F.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express 2(5), 1377–1393 (2011).
[Crossref] [PubMed]

Huang, X.

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

Huang, Z.-L.

Ježek, P.

Jia, S.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref] [PubMed]

J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9(12), 1181–1184 (2012).
[Crossref] [PubMed]

Jones, G. E.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
[Crossref] [PubMed]

Jones, S. A.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Jovanovic-Talisman, T.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
[Crossref] [PubMed]

Kamiyama, D.

R. McGorty, D. Kamiyama, and B. Huang, “Active microscope stabilization in three dimensions using image correlation,” Opt. Nanoscopy 2(1), 3 (2013).
[Crossref] [PubMed]

Kanchanawong, P.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

King, G. M.

Lampe, A.

A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, and J. Schmoranzer, “Multi-colour direct STORM with red emitting carbocyanines,” Biol. Cell 104(4), 229–237 (2012).
[Crossref] [PubMed]

Lee, M. K.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

Lee, S. H.

Lessard, G. A.

G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
[Crossref]

Lew, M. D.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Li, X.

Lidke, K. A.

Lin, Y.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
[Crossref] [PubMed]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Long, J. J.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

Manley, S.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

McGorty, R.

R. McGorty, D. Kamiyama, and B. Huang, “Active microscope stabilization in three dimensions using image correlation,” Opt. Nanoscopy 2(1), 3 (2013).
[Crossref] [PubMed]

Mlodzianoski, M. J.

Moerner, W. E.

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Moffitt, J. R.

S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, and X. Zhuang, “Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(23), 8452–8457 (2014).
[Crossref] [PubMed]

Monypenny, J.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
[Crossref] [PubMed]

Mothes, W.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

Munk, A.

Myers, J. R.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Pavani, S. R. P.

S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
[Crossref] [PubMed]

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
[Crossref]

S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
[Crossref] [PubMed]

Pavone, F. S.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
[Crossref]

Perkins, T. T.

Pertsinidis, A.

A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466(7306), 647–651 (2010).
[Crossref] [PubMed]

Piestun, R.

A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci. Rep. 4, 5388 (2014).
[Crossref] [PubMed]

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
[Crossref] [PubMed]

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
[Crossref] [PubMed]

T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4(3), 188–193 (2010).
[Crossref]

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
[Crossref]

S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
[Crossref] [PubMed]

Ptacin, J. L.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

Quirin, S.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
[Crossref] [PubMed]

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
[Crossref] [PubMed]

Rivera-Molina, F. E.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

Rosten, E.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Sahl, S. J.

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Santorová, J.

Schmoranzer, J.

A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, and J. Schmoranzer, “Multi-colour direct STORM with red emitting carbocyanines,” Biol. Cell 104(4), 229–237 (2012).
[Crossref] [PubMed]

Schnitzbauer, J.

Schönle, A.

Schreiner, J. M.

Schwartz, S. L.

Selvin, P. R.

Shapiro, L.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

Shechtman, Y.

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

Shim, S.-H.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Shtengel, G.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

Sigrist, S. J.

A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, and J. Schmoranzer, “Multi-colour direct STORM with red emitting carbocyanines,” Biol. Cell 104(4), 229–237 (2012).
[Crossref] [PubMed]

Simonson, P. D.

Smolková, K.

Sougrat, R.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Tjioe, M.

Toomre, D.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

Uchil, P. D.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

Ulrich, T. A.

Vaughan, J. C.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref] [PubMed]

J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9(12), 1181–1184 (2012).
[Crossref] [PubMed]

von Diezmann, A. R. S.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

Wang, S.

S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, and X. Zhuang, “Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(23), 8452–8457 (2014).
[Crossref] [PubMed]

Wang, Y.

Waterman, C. M.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

Werner, J. H.

G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
[Crossref]

Xie, X. S.

S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, and X. Zhuang, “Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(23), 8452–8457 (2014).
[Crossref] [PubMed]

Xu, K.

K. Xu, G. Zhong, and X. Zhuang, “Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons,” Science 339(6118), 452–456 (2013).
[Crossref] [PubMed]

Zhang, R.

Zhang, Y.

A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466(7306), 647–651 (2010).
[Crossref] [PubMed]

Zhong, G.

K. Xu, G. Zhong, and X. Zhuang, “Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons,” Science 339(6118), 452–456 (2013).
[Crossref] [PubMed]

Zhuang, X.

S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, and X. Zhuang, “Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(23), 8452–8457 (2014).
[Crossref] [PubMed]

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref] [PubMed]

K. Xu, G. Zhong, and X. Zhuang, “Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons,” Science 339(6118), 452–456 (2013).
[Crossref] [PubMed]

J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9(12), 1181–1184 (2012).
[Crossref] [PubMed]

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
[Crossref]

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
[Crossref]

Biol. Cell (1)

A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, and J. Schmoranzer, “Multi-colour direct STORM with red emitting carbocyanines,” Biol. Cell 104(4), 229–237 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Eur. Phys. J. B (1)

M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
[Crossref]

J. Adv. Res. (1)

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

Nano Lett. (1)

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative Multicolor Subdiffraction Imaging of Bacterial Protein Ultrastructures in Three Dimensions,” Nano Lett. 13(3), 987–993 (2013).
[Crossref] [PubMed]

Nat. Methods (5)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods 9(2), 195–200 (2011).
[Crossref] [PubMed]

J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9(12), 1181–1184 (2012).
[Crossref] [PubMed]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref] [PubMed]

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref] [PubMed]

T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4(3), 188–193 (2010).
[Crossref]

Nature (1)

A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466(7306), 647–651 (2010).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Nanoscopy (1)

R. McGorty, D. Kamiyama, and B. Huang, “Active microscope stabilization in three dimensions using image correlation,” Opt. Nanoscopy 2(1), 3 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, and X. Zhuang, “Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 111(23), 8452–8457 (2014).
[Crossref] [PubMed]

S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
[Crossref] [PubMed]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci. Rep. 4, 5388 (2014).
[Crossref] [PubMed]

Science (2)

K. Xu, G. Zhong, and X. Zhuang, “Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons,” Science 339(6118), 452–456 (2013).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Other (3)

J. Silfies, E. Lieser, S. Schwartz, and M. Davidson, “Correcting Focus Drift in Live-Cell Microscopy,” http://www.microscopyu.com/articles/livecellimaging/focusdrift.html .

A. D. Greengard, “Three dimensional sensing and imaging using rotating pointspread functions,” Ph.D. Dissertation, Univrsity of Colorado, Boulder, CO, USA, Advisor: Rafael Piestun (2006).

G. Grover, “Computational-Optical Microscopy for 3D Biological Imaging Beyond the Diffraction Limit.” Ph.D. Dissertation, University of Colorado at Boulder, Boulder, CO, USA. Advisor: Rafael Piestun (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The effect of 3D drift on super-resolution localization microscopy reconstruction of microtubules. (a) Map of localizations without correcting for drift. In this experiment the stage drifted about 400 nm in x, 800 nm in y and within a range of 300 nm in z with manual feedback to avoid the sample from leaving the focal region. (b) Reconstruction map after correcting localizations for drift estimated using fluorescent bead fiducials.
Fig. 2
Fig. 2 Setup for super-resolution imaging with closed-loop active drift correction. A 641 nm laser is used for excitation in epi-illumination and an LED (690 nm) for bright-field transmission imaging. A switching circuit controls the laser and LED. A closed-loop feedback processes the EMCCD data and delivers signals to the nano-positioning stage holding the sample. The acquisition scheme on the top right shows the switching of the excitation laser and the LED synced with the camera.
Fig. 3
Fig. 3 Bright-field imaging of gold beads used for drift estimation. (a) Images taken for z calibration, at different defocus positions in the DH-PSF microscope. (b) The rotation vs. z calibration curve.
Fig. 4
Fig. 4 Experiment to evaluate the precision of adaptive drift correction. A bright fluorescent bead is localized with and without adaptive drift correction. The plots show precision histograms for a fluorescent bead with a posteriori correction but without adaptive correction (left) and with adaptive correction (right) and no a posteriori correction.
Fig. 5
Fig. 5 An experiment demonstrating adaptive drift compensation and stabilization. (a) Blue, green and red curves are for the estimated x, y and z positions of the sample. The spikes are instances when the stage was purposely moved away and the control system brought the sample back to the original position. (b-d) Details of a few instances of stage perturbation.
Fig. 6
Fig. 6 Long term stability achieved using the adaptive drift compensation during a d-STORM experiment. Blue, green and red curves show the estimated x, y and z positions of the sample using 5 gold beads and 10 averaged images.
Fig. 7
Fig. 7 3D super-resolution localization imaging with adaptive drift correction. (a) Super-resolution image of microtubules in PtK1 cells. (b) A histogram of transverse localizations of a microtubule with FWHM = 88 nm. (c) Zoomed-in super-resolution and (d) normal fluorescent images of a region in (a). The colomap represents the depth.

Metrics