Abstract

A novel optical fiber torsion sensor head is proposed. A section of polarization-maintaining fiber (PMF) is spliced between single mode fiber (SMF), and a twist taper is fabricated by a commercial electric-arc fusion splicer in the middle of the PMF. The asymmetric characteristics are obtained by the twist taper so that a fiber torsion sensor with directional discrimination is fabricated. Due to the characteristics of the asymmetric structure, the torsion sensitivity for the twist rate from 0 rad/m to −8 rad/m reaches 2.392 nm/rad·m−1, and for the twist rate from 0 rad/m to 8 rad/m reaches 1.071 nm/rad·m−1 respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Directional torsion and temperature discrimination based on a multicore fiber with a helical structure

Hailiang Zhang, Zhifang Wu, Perry Ping Shum, Xuguang Shao, Ruoxu Wang, Xuan Quyen Dinh, Songnian Fu, Weijun Tong, and Ming Tang
Opt. Express 26(1) 544-551 (2018)

Torsion sensor based on inter-core mode coupling in seven-core fiber

Fengze Tan, Zhengyong Liu, Jiajing Tu, Changyuan Yu, Chao Lu, and Hwa-Yaw Tam
Opt. Express 26(16) 19835-19844 (2018)

In-fiber torsion sensor based on dual polarized Mach-Zehnder interference

Lei Chen, Wei-Gang Zhang, Li Wang, Hao Zhang, Jonathan Sieg, Quan Zhou, Li-Yu Zhang, Biao Wang, and Tie-Yi Yan
Opt. Express 22(26) 31654-31664 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Song, Y. Miao, W. Lin, H. Zhang, J. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express 21(22), 26806–26811 (2013).
    [Crossref] [PubMed]
  2. D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
    [Crossref]
  3. R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
    [Crossref] [PubMed]
  4. J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
    [Crossref]
  5. W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
    [Crossref] [PubMed]
  6. J. Y. Cho, J. H. Lim, and K. H. Lee, “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photonics Technol. Lett. 17(2), 453–455 (2005).
    [Crossref]
  7. H. Y. Fu, S. K. Khijwania, H. Y. Tam, P. K. A. Wai, and C. Lu, “Polarization-maintaining photonic-crystal-fiber-based all-optical polarimetric torsion sensor,” Appl. Opt. 49(31), 5954–5958 (2010).
    [Crossref]
  8. Z. J. Yan, C. B. Mou, K. M. Zhou, X. F. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol. 29(18), 2715–2724 (2011).
    [Crossref]
  9. F. Yang, Z. Fang, Z. Pan, Q. Ye, H. Cai, and R. Qu, “Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings,” Opt. Express 20(27), 28839–28845 (2012).
    [Crossref] [PubMed]
  10. D. Lesnik and D. Donlagic, “In-line, fiber-optic polarimetric twist/torsion sensor,” Opt. Lett. 38(9), 1494–1496 (2013).
    [Crossref] [PubMed]
  11. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
    [Crossref]
  12. H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
    [Crossref]
  13. X. Xi, G. K. L. Wong, T. Weiss, and P. St. J. Russell, “Measuring mechanical strain and twist using helical photonic crystal fiber,” Opt. Lett. 38(24), 5401–5404 (2013).
    [Crossref] [PubMed]
  14. R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
    [Crossref] [PubMed]
  15. L. Chen, W. G. Zhang, L. Wang, H. Zhang, J. Sieg, Q. Zhou, L. Y. Zhang, B. Wang, and T. Y. Yan, “In-fiber torsion sensor based on dual polarized Mach-Zehnder interference,” Opt. Express 22(26), 31654–31664 (2014).
    [Crossref] [PubMed]
  16. L. A. Fernandes, J. R. Grenier, J. S. Aitchison, and P. R. Herman, “Fiber optic stress-independent helical torsion sensor,” Opt. Lett. 40(4), 657–660 (2015).
    [Crossref] [PubMed]
  17. Y. Jung, G. Brambilla, and D. J. Richardson, “Polarization-maintaining optical microfiber,” Opt. Lett. 35(12), 2034–2036 (2010).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (4)

2012 (2)

F. Yang, Z. Fang, Z. Pan, Q. Ye, H. Cai, and R. Qu, “Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings,” Opt. Express 20(27), 28839–28845 (2012).
[Crossref] [PubMed]

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

2011 (1)

2010 (3)

2005 (2)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

J. Y. Cho, J. H. Lim, and K. H. Lee, “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photonics Technol. Lett. 17(2), 453–455 (2005).
[Crossref]

1995 (1)

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

Aitchison, J. S.

Bennion, I.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

Brambilla, G.

Cai, H.

Chen, L.

Chen, X.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

Chen, X. F.

Cho, J. Y.

J. Y. Cho, J. H. Lim, and K. H. Lee, “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photonics Technol. Lett. 17(2), 453–455 (2005).
[Crossref]

Chung, Y. J.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Donlagic, D.

Fang, Z.

Fernandes, L. A.

Fu, H. Y.

Gao, R.

Geng, P. C.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Grenier, J. R.

Herman, P. R.

Huang, X.

Jiang, L.

Jiang, Y.

Jung, Y.

Khatib, O.

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

Khijwania, S. K.

Kim, B. K.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, H. M.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, T. H.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Lee, K. H.

J. Y. Cho, J. H. Lim, and K. H. Lee, “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photonics Technol. Lett. 17(2), 453–455 (2005).
[Crossref]

Lesnik, D.

Li, X. L.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Lim, J. H.

J. Y. Cho, J. H. Lim, and K. H. Lee, “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photonics Technol. Lett. 17(2), 453–455 (2005).
[Crossref]

Lin, W.

Liu, B.

Lu, C.

Miao, Y.

Mou, C. B.

Pan, Z.

Qu, R.

Richardson, D. J.

Ruan, J.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Russell, P. St. J.

Sieg, J.

Song, B.

Tam, H. Y.

Vischer, D.

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

Wai, P. K. A.

Wang, B.

Wang, L.

Wang, M.

Weiss, T.

Wong, G. K. L.

Wu, J.

Xi, X.

Xue, X. L.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Yan, T. Y.

Yan, Z. J.

Yang, F.

Ye, Q.

Yin, L. M.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Yiping, W.

Zhang, H.

Zhang, L.

Z. J. Yan, C. B. Mou, K. M. Zhou, X. F. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol. 29(18), 2715–2724 (2011).
[Crossref]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

Zhang, L. Y.

Zhang, W. G.

L. Chen, W. G. Zhang, L. Wang, H. Zhang, J. Sieg, Q. Zhou, L. Y. Zhang, B. Wang, and T. Y. Yan, “In-fiber torsion sensor based on dual polarized Mach-Zehnder interference,” Opt. Express 22(26), 31654–31664 (2014).
[Crossref] [PubMed]

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Zhou, K.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

Zhou, K. M.

Zhou, Q.

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (3)

J. Y. Cho, J. H. Lim, and K. H. Lee, “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photonics Technol. Lett. 17(2), 453–455 (2005).
[Crossref]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

IEEE Trans. Robot. Autom. (1)

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the twist sensor: (a) sensor head, (b) cross-section of the PMF, (c) twist taper, (d) microscopic image, (e) coordinate, (f) coupling between core mode and cladding mode.
Fig. 2
Fig. 2 Schematic diagram of the experiment setup.
Fig. 3
Fig. 3 Transmission spectra of the structure: (a) without taper and with a normal taper, (b) with twist taper.
Fig. 4
Fig. 4 Torsion responses of the resonance dip wavelengths: (a) at 1358.89 nm, (b) at 1429.51 nm.
Fig. 5
Fig. 5 Resonance dip wavelength shift of the structure: (a) with twist taper at −8~0 rad/m, (b) with twist taper at 0~8 rad/m, (c) without taper at −8~0 rad/m, (d) without taper at 0~8 rad/m.
Fig. 6
Fig. 6 Wavelength shift: (a) torsion, (b) temperature.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 2 π ( n e f f c o n e f f c l ) L λ
ϕ = ( 2 m + 1 ) π , m = 0 , 1 , 2...
λ m f / s = 2 ( n e f f c o , f / s n e f f c l , f / s ) L 2 m + 1
x 2 a 2 + y 2 b 2 = 1
x = a cos θ , y = b sin θ
a = n e f f c o , f n e f f c l , f , b = n e f f c o , s n e f f c l , s
ϕ = 2 π λ l / 2 l / 2 a 2 cos 2 θ + b 2 sin 2 θ d z
θ = { d 2 ( α + γ β ) + ( z + d 2 ) β ,       l 2 z < d 2 ( α + γ β ) z ,                              d 2 z < d 2 d 2 ( α + γ β ) + ( z d 2 ) β ,            d 2 < z l 2

Metrics