Abstract

Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Holographic aperture ladar with range compression

Jason W. Stafford, Bradley D. Duncan, and David J. Rabb
J. Opt. Soc. Am. A 34(5) A1-A9 (2017)

Demonstrated resolution enhancement capability of a stripmap holographic aperture ladar system

Samuel M. Venable, Bradley D. Duncan, Matthew P. Dierking, and David J. Rabb
Appl. Opt. 51(22) 5531-5542 (2012)

Interferometric synthetic aperture ladar using code division multiple access apertures

Andrew J. Stokes, Matthew P. Dierking, and David J. Rabb
Appl. Opt. 56(17) 5003-5012 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
    [Crossref]
  2. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geigermode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13, 335–350 (2002).
  3. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005).
    [Crossref] [PubMed]
  4. D. J. Rabb, D. F. Jameson, J. W. Stafford, and A. J. Stokes, “Multi-transmitter aperture synthesis,” Opt. Express 18(24), 24937–24945 (2010).
    [Crossref] [PubMed]
  5. B. D. Duncan and M. P. Dierking, “Holographic aperture ladar: erratum,” Appl. Opt. 52(4), 706–708 (2013).
    [Crossref] [PubMed]
  6. A. E. Tippie, A. Kumar, and J. R. Fienup, “High-resolution synthetic-aperture digital holography with digital phase and pupil correction,” Opt. Express 19(13), 12027–12038 (2011).
    [Crossref] [PubMed]
  7. S. Crouch and Z. W. Barber, “Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques,” Opt. Express 20(22), 24237–24246 (2012).
    [Crossref] [PubMed]
  8. B. R. Dapore, D. J. Rabb, and J. W. Haus, “Phase noise analysis of two wavelength coherent imaging system,” Opt. Express 21(25), 30642–30652 (2013).
    [Crossref] [PubMed]
  9. J. Stafford, B. Duncan, and D. J. Rabb, “Range-compressed Holographic Aperture Ladar,” in Imaging and Applied Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper LM1F.3.
    [Crossref]
  10. J. C. Marron and K. S. Schroeder, “Three-dimensional lensless imaging using laser frequency diversity,” Appl. Opt. 31(2), 255–262 (1992).
    [Crossref] [PubMed]
  11. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
    [Crossref] [PubMed]

2013 (2)

2012 (2)

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

S. Crouch and Z. W. Barber, “Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques,” Opt. Express 20(22), 24237–24246 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2005 (1)

2002 (1)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geigermode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13, 335–350 (2002).

1992 (1)

Aull, B. F.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geigermode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13, 335–350 (2002).

Babbitt, W. R.

Barber, Z. W.

Beck, S. M.

Berg, T.

Berkovic, G.

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Buck, J. R.

Buell, W. F.

Crouch, S.

Daniels, P. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geigermode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13, 335–350 (2002).

Dapore, B. R.

Dickinson, R. P.

Dierking, M. P.

Duncan, B. D.

Felton, B. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geigermode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13, 335–350 (2002).

Fienup, J. R.

Haus, J. W.

Heinrichs, R. M.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geigermode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13, 335–350 (2002).

Jameson, D. F.

Kaylor, B.

Kozlowski, D. A.

Kumar, A.

Landers, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geigermode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13, 335–350 (2002).

Loomis, A. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geigermode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13, 335–350 (2002).

Marechal, N. J.

Marron, J. C.

Rabb, D. J.

Reibel, R. R.

Roos, P. A.

Schroeder, K. S.

Shafir, E.

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Stafford, J. W.

Stokes, A. J.

Tippie, A. E.

Wright, T. J.

Young, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geigermode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13, 335–350 (2002).

Adv. Opt. Photonics (1)

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Appl. Opt. (3)

Linc. Lab. J. (1)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geigermode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13, 335–350 (2002).

Opt. Express (4)

Opt. Lett. (1)

Other (1)

J. Stafford, B. Duncan, and D. J. Rabb, “Range-compressed Holographic Aperture Ladar,” in Imaging and Applied Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper LM1F.3.
[Crossref]

Supplementary Material (5)

NameDescription
» Visualization 1: AVI (14262 KB)      A movie showing the 3D point cloud for an Air Force bar target derived from first a single field segment followed by the fully synthetic field.
» Visualization 2: AVI (13373 KB)      A movie that compares the point clouds for the single segment and stitched fields for the machined aluminum plate.
» Visualization 3: AVI (13251 KB)      A movie comparing the low and high resolution point clouds for the razor.
» Visualization 4: AVI (12480 KB)      A movie comparing the low and high resolution point clouds for the paper cup.
» Visualization 5: AVI (2432 KB)      A movie depicting the interferometric phase evolution derived from temporally coherent 3D-HAL images for a coffee cup undergoing thermal expansion.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of a generalized 3D-HAL system. A chirped transmit source flood illuminates a target (Tx) and the fast focal plane array (FPA) records the interference between a local oscillator (not shown) and the complex return field at various positions along a line of travel (labeled a-g). The total synthetic aperture, d S A , provides enhanced resolution along the direction of platform motion. (b) The sequence of chirp waveforms, the temporally dependent field segment for chirp b, and the fully registered synthetic field for all FPA positions or “data cube”, which is the fully sampled Fourier space representation of the scene.
Fig. 2
Fig. 2 A diagram (a) of the pupil-plane field segments and the 5x7 grid of segments. 3D renderings of an Air Force bar target for (b) a single segment and (c) a synthesized field showing 5x vertical and 7x horizontal resolution enhancement. Visualization 1 is a movie comparing the point clouds for the single segment and the stitched field.
Fig. 3
Fig. 3 Demonstration of resolution enhancement using 3D-HAL. (a) Photograph of an aluminum plate overlaid with machined features. (b) Point cloud derived from processing of a single 200x280 field segment. (c) Point cloud derived from processing of the fully synthesized aperture of size 1000x1960 colored by depth out of the plane. Visualization 2 shows the cross range resolution enhancement of the stitched field versus the single segment.
Fig. 4
Fig. 4 Photographs of (a) a shaving razor and (b) a paper cup. Single field segment and full synthesized aperture 3D-HAL renderings of (c-d) the razor and (e-f) the paper cup respectively (see Visualization 3 and Visualization 4 for resolution comparison).
Fig. 5
Fig. 5 (a) Picture of the coffee mug and the boiling water level. (b) A colormap of the unwrapped phase after 60 seconds rendered onto the point cloud (see Visualization 5). (c) The observed phase change is proportional to the red arrows, which represent the dot product of the thermal expansion (exaggerated) along the line of sight of the 3D-HAL system. (d) By taking this projection into account, an estimate of the displacement can be made.

Metrics