Abstract

Quantum logic gate is indispensable to quantum computation. One of the important qubit operations is the quantum controlled-not (CNOT) gate that performs a NOT operation on a target qubit depending on the state of the control qubit. In this paper we present a scheme to realize the quantum CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage. The influence of various decoherence processes on the fidelity is discussed. The strict numerical simulation results show that the fidelity for the CNOT gate is relatively high.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of 3D entanglement between two spatially separated atoms via shortcuts to adiabatic passage

Jing-bo Lin, Yan Liang, Chong Song, Xin Ji, and Shou Zhang
J. Opt. Soc. Am. B 33(4) 519-524 (2016)

Fast generation of three-dimensional entanglement between two spatially separated atoms via invariant-based shortcut

Jin-Lei Wu, Chong Song, Xin Ji, and Shou Zhang
J. Opt. Soc. Am. B 33(10) 2026-2032 (2016)

Hybrid superconductor-atom quantum interface with Raman chirped shortcut to adiabatic passage

Kai-Yu Liao, Zhen-Tao Liang, Jie Liang, Wei Huang, and Yan-Xiong Du
Opt. Express 27(21) 29639-29648 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995).
    [Crossref] [PubMed]
  2. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
    [Crossref] [PubMed]
  3. Y. F. Huang, X. F. Ren, Y. S. Zhang, L. M. Duan, and G. C. Guo, “Experimental Teleportation of a Quantum Controlled-NOT Gate,” Phys. Rev. Lett. 93, 240501 (2004).
    [Crossref]
  4. S. B. Zheng, “Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction,” Phys. Rev. A 87, 042318 (2013).
    [Crossref]
  5. B. Qiao, H. E. Ruda, and J. Wang, “Multiqubit computing and error-avoiding codes in subspace using quantum dots,” J. Appl. Phys. 91, 2524–2529 (2002).
    [Crossref]
  6. J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74, 4091–4094 (1995).
    [Crossref] [PubMed]
  7. M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
    [Crossref]
  8. C. P. Yang and S. Chun, “Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED,” Phys. Rev. A 67, 042311 (2003).
    [Crossref]
  9. C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006).
    [Crossref]
  10. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
  11. D. P. DiVincenzo, S. L. Braunstein, and H. K. Lo, Scalable Quantum Computers (Wiley- VCH, Berlin, 2001).
  12. N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
    [Crossref] [PubMed]
  13. S. B. Zheng, “Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation,” Phys. Rev. Lett. 95, 080502 (2005).
    [Crossref] [PubMed]
  14. D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, and M. Desouter-Lecomte, “Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory,” Phys. Rev. A 80, 042325 (2009).
    [Crossref]
  15. N. Sangouard, X. Lacour, S. Guérin, and H. R. Jauslin, “CNOT gate by adiabatic passage with an optical cavity,” Eur. Phys. J. D 37, 451–456 (2006).
    [Crossref]
  16. X. Q. Shao, L. Chen, S. Zhang, and K. H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys. 42, 165507 (2009).
    [Crossref]
  17. M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107, 9937–9945 (2003).
    [Crossref]
  18. M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109, 6838–6844 (2005).
    [Crossref]
  19. M. Demirplak and S. A. Rice, “On the consistency, extremal, and global properties of counterdiabatic fields,” J. Chem. Phys. 109, 154111 (2008).
    [Crossref]
  20. E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
    [Crossref]
  21. A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
    [Crossref]
  22. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to Adiabatic Passage in Two- and Three-Level Atoms,” Phys. Rev. Lett. 105, 123003 (2010).
    [Crossref] [PubMed]
  23. K. H. Hoffmann, P. Salamon, Y. Rezek, and R. Kosloff, “Time-optimal controls for frictionless cooling in harmonic traps,” Europhys. Lett. 96, 60015 (2011).
    [Crossref]
  24. A. del Campo, “Shortcuts to adiabaticity by counter-diabatic driving,” Phys. Rev. Lett. 111, 100502 (2013).
    [Crossref]
  25. M. Lu, Y. Xia, L. T. Shen, J. Song, and N. B. An, “Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity,” Phys. Rev. A 89, 012326 (2014).
    [Crossref]
  26. Y. H. Chen, Y. Xia, Q. Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
    [Crossref]
  27. A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
    [Crossref] [PubMed]
  28. J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie, “Shortcut to adiabaticity for an interacting Bose-Einstein condensate,” Europhys. Lett. 93, 23001 (2011).
    [Crossref]
  29. Y. H. Cheng, Y. Xia, Q. Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
    [Crossref]
  30. Y. Liang, Q. C. Wu, S. L. Su, X. Ji, and S. Zhang, “Shortcuts to adiabatic passage for multiqubit controlled-phase gate,” Phys. Rev. A 91, 032304 (2015).
    [Crossref]
  31. P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
    [Crossref]
  32. P. Facchi and S. Pascazio, “Quantum Zeno Subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
    [Crossref] [PubMed]
  33. P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser. 196, 012017 (2009).
  34. H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458 (1969).
    [Crossref]
  35. M. A. Lohe, “Exact time dependence of solutions to the time-dependent Schrodinger equation,” J. Phys. A: Math. and Theor. 42, 035307 (2009).
    [Crossref]
  36. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [Crossref] [PubMed]
  37. A. Mostafazadeh, Dynamical Invariants, Adiabatic Approximation, and the Geometric Phase (Nova Science Pub Incorporated2001).
  38. X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
    [Crossref]
  39. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
    [Crossref]
  40. D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
    [Crossref] [PubMed]

2015 (2)

Y. H. Cheng, Y. Xia, Q. Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Y. Liang, Q. C. Wu, S. L. Su, X. Ji, and S. Zhang, “Shortcuts to adiabatic passage for multiqubit controlled-phase gate,” Phys. Rev. A 91, 032304 (2015).
[Crossref]

2014 (2)

M. Lu, Y. Xia, L. T. Shen, J. Song, and N. B. An, “Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity,” Phys. Rev. A 89, 012326 (2014).
[Crossref]

Y. H. Chen, Y. Xia, Q. Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

2013 (4)

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

A. del Campo, “Shortcuts to adiabaticity by counter-diabatic driving,” Phys. Rev. Lett. 111, 100502 (2013).
[Crossref]

S. B. Zheng, “Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction,” Phys. Rev. A 87, 042318 (2013).
[Crossref]

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

2012 (2)

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

2011 (3)

J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie, “Shortcut to adiabaticity for an interacting Bose-Einstein condensate,” Europhys. Lett. 93, 23001 (2011).
[Crossref]

K. H. Hoffmann, P. Salamon, Y. Rezek, and R. Kosloff, “Time-optimal controls for frictionless cooling in harmonic traps,” Europhys. Lett. 96, 60015 (2011).
[Crossref]

X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[Crossref]

2010 (1)

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to Adiabatic Passage in Two- and Three-Level Atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref] [PubMed]

2009 (4)

M. A. Lohe, “Exact time dependence of solutions to the time-dependent Schrodinger equation,” J. Phys. A: Math. and Theor. 42, 035307 (2009).
[Crossref]

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser. 196, 012017 (2009).

D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, and M. Desouter-Lecomte, “Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory,” Phys. Rev. A 80, 042325 (2009).
[Crossref]

X. Q. Shao, L. Chen, S. Zhang, and K. H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys. 42, 165507 (2009).
[Crossref]

2008 (1)

M. Demirplak and S. A. Rice, “On the consistency, extremal, and global properties of counterdiabatic fields,” J. Chem. Phys. 109, 154111 (2008).
[Crossref]

2006 (3)

N. Sangouard, X. Lacour, S. Guérin, and H. R. Jauslin, “CNOT gate by adiabatic passage with an optical cavity,” Eur. Phys. J. D 37, 451–456 (2006).
[Crossref]

C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006).
[Crossref]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

2005 (3)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

S. B. Zheng, “Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation,” Phys. Rev. Lett. 95, 080502 (2005).
[Crossref] [PubMed]

M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109, 6838–6844 (2005).
[Crossref]

2004 (1)

Y. F. Huang, X. F. Ren, Y. S. Zhang, L. M. Duan, and G. C. Guo, “Experimental Teleportation of a Quantum Controlled-NOT Gate,” Phys. Rev. Lett. 93, 240501 (2004).
[Crossref]

2003 (2)

M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107, 9937–9945 (2003).
[Crossref]

C. P. Yang and S. Chun, “Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED,” Phys. Rev. A 67, 042311 (2003).
[Crossref]

2002 (2)

B. Qiao, H. E. Ruda, and J. Wang, “Multiqubit computing and error-avoiding codes in subspace using quantum dots,” J. Appl. Phys. 91, 2524–2529 (2002).
[Crossref]

P. Facchi and S. Pascazio, “Quantum Zeno Subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[Crossref] [PubMed]

2001 (1)

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

2000 (1)

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[Crossref]

1997 (1)

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref] [PubMed]

1995 (3)

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74, 4091–4094 (1995).
[Crossref] [PubMed]

D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995).
[Crossref] [PubMed]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

1969 (1)

H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458 (1969).
[Crossref]

Alonso, D.

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

An, N. B.

M. Lu, Y. Xia, L. T. Shen, J. Song, and N. B. An, “Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity,” Phys. Rev. A 89, 012326 (2014).
[Crossref]

Barenco, A.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Bennett, C. H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Bomble, L.

D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, and M. Desouter-Lecomte, “Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory,” Phys. Rev. A 80, 042325 (2009).
[Crossref]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Braunstein, S. L.

D. P. DiVincenzo, S. L. Braunstein, and H. K. Lo, Scalable Quantum Computers (Wiley- VCH, Berlin, 2001).

Bužek, V.

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

Capuzzi, P.

J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie, “Shortcut to adiabaticity for an interacting Bose-Einstein condensate,” Europhys. Lett. 93, 23001 (2011).
[Crossref]

Chen, L.

X. Q. Shao, L. Chen, S. Zhang, and K. H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys. 42, 165507 (2009).
[Crossref]

Chen, Q. Q.

Y. H. Cheng, Y. Xia, Q. Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Y. H. Chen, Y. Xia, Q. Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

Chen, X.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[Crossref]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to Adiabatic Passage in Two- and Three-Level Atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref] [PubMed]

Chen, Y. H.

Y. H. Chen, Y. Xia, Q. Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

Cheng, Y. H.

Y. H. Cheng, Y. Xia, Q. Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Chuang, I. L.

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref] [PubMed]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

Chun, S.

C. P. Yang and S. Chun, “Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED,” Phys. Rev. A 67, 042311 (2003).
[Crossref]

Cirac, J. I.

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74, 4091–4094 (1995).
[Crossref] [PubMed]

Cleve, R.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Daems, D.

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

Dawkins, S. T.

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

del Campo, A.

A. del Campo, “Shortcuts to adiabaticity by counter-diabatic driving,” Phys. Rev. Lett. 111, 100502 (2013).
[Crossref]

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

Demirplak, M.

M. Demirplak and S. A. Rice, “On the consistency, extremal, and global properties of counterdiabatic fields,” J. Chem. Phys. 109, 154111 (2008).
[Crossref]

M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109, 6838–6844 (2005).
[Crossref]

M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107, 9937–9945 (2003).
[Crossref]

Desouter-Lecomte, M.

D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, and M. Desouter-Lecomte, “Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory,” Phys. Rev. A 80, 042325 (2009).
[Crossref]

DiVincenzo, D. P.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995).
[Crossref] [PubMed]

D. P. DiVincenzo, S. L. Braunstein, and H. K. Lo, Scalable Quantum Computers (Wiley- VCH, Berlin, 2001).

Duan, L. M.

Y. F. Huang, X. F. Ren, Y. S. Zhang, L. M. Duan, and G. C. Guo, “Experimental Teleportation of a Quantum Controlled-NOT Gate,” Phys. Rev. Lett. 93, 240501 (2004).
[Crossref]

Dulieu, O.

D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, and M. Desouter-Lecomte, “Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory,” Phys. Rev. A 80, 042325 (2009).
[Crossref]

Facchi, P.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser. 196, 012017 (2009).

P. Facchi and S. Pascazio, “Quantum Zeno Subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[Crossref] [PubMed]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[Crossref]

Gershenfeld, N. A.

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref] [PubMed]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Gorini, V.

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[Crossref]

Guérin, S.

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

N. Sangouard, X. Lacour, S. Guérin, and H. R. Jauslin, “CNOT gate by adiabatic passage with an optical cavity,” Eur. Phys. J. D 37, 451–456 (2006).
[Crossref]

Guery-Odelin, D.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

Guéry-Odelin, D.

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to Adiabatic Passage in Two- and Three-Level Atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref] [PubMed]

Guo, G. C.

Y. F. Huang, X. F. Ren, Y. S. Zhang, L. M. Duan, and G. C. Guo, “Experimental Teleportation of a Quantum Controlled-NOT Gate,” Phys. Rev. Lett. 93, 240501 (2004).
[Crossref]

Han, S.

C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006).
[Crossref]

Hettrich, M.

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

Hoffmann, K. H.

K. H. Hoffmann, P. Salamon, Y. Rezek, and R. Kosloff, “Time-optimal controls for frictionless cooling in harmonic traps,” Europhys. Lett. 96, 60015 (2011).
[Crossref]

Huang, Y. F.

Y. F. Huang, X. F. Ren, Y. S. Zhang, L. M. Duan, and G. C. Guo, “Experimental Teleportation of a Quantum Controlled-NOT Gate,” Phys. Rev. Lett. 93, 240501 (2004).
[Crossref]

Ibáñez, S.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

Jauslin, H. R.

N. Sangouard, X. Lacour, S. Guérin, and H. R. Jauslin, “CNOT gate by adiabatic passage with an optical cavity,” Eur. Phys. J. D 37, 451–456 (2006).
[Crossref]

Ji, X.

Y. Liang, Q. C. Wu, S. L. Su, X. Ji, and S. Zhang, “Shortcuts to adiabatic passage for multiqubit controlled-phase gate,” Phys. Rev. A 91, 032304 (2015).
[Crossref]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Kosloff, R.

K. H. Hoffmann, P. Salamon, Y. Rezek, and R. Kosloff, “Time-optimal controls for frictionless cooling in harmonic traps,” Europhys. Lett. 96, 60015 (2011).
[Crossref]

Labeyrie, G.

J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie, “Shortcut to adiabaticity for an interacting Bose-Einstein condensate,” Europhys. Lett. 93, 23001 (2011).
[Crossref]

Lacour, X.

N. Sangouard, X. Lacour, S. Guérin, and H. R. Jauslin, “CNOT gate by adiabatic passage with an optical cavity,” Eur. Phys. J. D 37, 451–456 (2006).
[Crossref]

Lewis, H. R.

H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458 (1969).
[Crossref]

Liang, Y.

Y. Liang, Q. C. Wu, S. L. Su, X. Ji, and S. Zhang, “Shortcuts to adiabatic passage for multiqubit controlled-phase gate,” Phys. Rev. A 91, 032304 (2015).
[Crossref]

Lizuain, I.

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to Adiabatic Passage in Two- and Three-Level Atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref] [PubMed]

Lo, H. K.

D. P. DiVincenzo, S. L. Braunstein, and H. K. Lo, Scalable Quantum Computers (Wiley- VCH, Berlin, 2001).

Lohe, M. A.

M. A. Lohe, “Exact time dependence of solutions to the time-dependent Schrodinger equation,” J. Phys. A: Math. and Theor. 42, 035307 (2009).
[Crossref]

Lu, M.

M. Lu, Y. Xia, L. T. Shen, J. Song, and N. B. An, “Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity,” Phys. Rev. A 89, 012326 (2014).
[Crossref]

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Margolus, N.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Marmo, G.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser. 196, 012017 (2009).

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[Crossref]

Martínez-Garaot, S.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

Modugno, M.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

Mostafazadeh, A.

A. Mostafazadeh, Dynamical Invariants, Adiabatic Approximation, and the Geometric Phase (Nova Science Pub Incorporated2001).

Muga, J. G.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[Crossref]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to Adiabatic Passage in Two- and Three-Level Atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

Ott, K.

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

Pascazio, S.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser. 196, 012017 (2009).

P. Facchi and S. Pascazio, “Quantum Zeno Subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[Crossref] [PubMed]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[Crossref]

Poschinger, U.

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

Qiao, B.

B. Qiao, H. E. Ruda, and J. Wang, “Multiqubit computing and error-avoiding codes in subspace using quantum dots,” J. Appl. Phys. 91, 2524–2529 (2002).
[Crossref]

Ren, X. F.

Y. F. Huang, X. F. Ren, Y. S. Zhang, L. M. Duan, and G. C. Guo, “Experimental Teleportation of a Quantum Controlled-NOT Gate,” Phys. Rev. Lett. 93, 240501 (2004).
[Crossref]

Rezek, Y.

K. H. Hoffmann, P. Salamon, Y. Rezek, and R. Kosloff, “Time-optimal controls for frictionless cooling in harmonic traps,” Europhys. Lett. 96, 60015 (2011).
[Crossref]

Ribeyre, T.

D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, and M. Desouter-Lecomte, “Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory,” Phys. Rev. A 80, 042325 (2009).
[Crossref]

Rice, S. A.

M. Demirplak and S. A. Rice, “On the consistency, extremal, and global properties of counterdiabatic fields,” J. Chem. Phys. 109, 154111 (2008).
[Crossref]

M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109, 6838–6844 (2005).
[Crossref]

M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107, 9937–9945 (2003).
[Crossref]

Riesenfeld, W. B.

H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458 (1969).
[Crossref]

Ruda, H. E.

B. Qiao, H. E. Ruda, and J. Wang, “Multiqubit computing and error-avoiding codes in subspace using quantum dots,” J. Appl. Phys. 91, 2524–2529 (2002).
[Crossref]

Ruschhaupt, A.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to Adiabatic Passage in Two- and Three-Level Atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref] [PubMed]

Ruster, T.

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

Salamon, P.

K. H. Hoffmann, P. Salamon, Y. Rezek, and R. Kosloff, “Time-optimal controls for frictionless cooling in harmonic traps,” Europhys. Lett. 96, 60015 (2011).
[Crossref]

Sangouard, N.

N. Sangouard, X. Lacour, S. Guérin, and H. R. Jauslin, “CNOT gate by adiabatic passage with an optical cavity,” Eur. Phys. J. D 37, 451–456 (2006).
[Crossref]

Šašura, M.

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

Schaff, J. F.

J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie, “Shortcut to adiabaticity for an interacting Bose-Einstein condensate,” Europhys. Lett. 93, 23001 (2011).
[Crossref]

Schmidt-Kaler, F.

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Shao, X. Q.

X. Q. Shao, L. Chen, S. Zhang, and K. H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys. 42, 165507 (2009).
[Crossref]

Shen, L. T.

M. Lu, Y. Xia, L. T. Shen, J. Song, and N. B. An, “Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity,” Phys. Rev. A 89, 012326 (2014).
[Crossref]

Shor, P.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Singer, K.

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

Sleator, T.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Smolin, J.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Song, J.

Y. H. Cheng, Y. Xia, Q. Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Y. H. Chen, Y. Xia, Q. Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

M. Lu, Y. Xia, L. T. Shen, J. Song, and N. B. An, “Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity,” Phys. Rev. A 89, 012326 (2014).
[Crossref]

Song, X. L.

J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie, “Shortcut to adiabaticity for an interacting Bose-Einstein condensate,” Europhys. Lett. 93, 23001 (2011).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Su, S. L.

Y. Liang, Q. C. Wu, S. L. Su, X. Ji, and S. Zhang, “Shortcuts to adiabatic passage for multiqubit controlled-phase gate,” Phys. Rev. A 91, 032304 (2015).
[Crossref]

Sudarshan, E. C. G.

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[Crossref]

Sugny, D.

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, and M. Desouter-Lecomte, “Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory,” Phys. Rev. A 80, 042325 (2009).
[Crossref]

Torrontegui, E.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[Crossref]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Vignolo, P.

J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie, “Shortcut to adiabaticity for an interacting Bose-Einstein condensate,” Europhys. Lett. 93, 23001 (2011).
[Crossref]

Walther, A.

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

Wang, J.

B. Qiao, H. E. Ruda, and J. Wang, “Multiqubit computing and error-avoiding codes in subspace using quantum dots,” J. Appl. Phys. 91, 2524–2529 (2002).
[Crossref]

Weinfurter, H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Wu, Q. C.

Y. Liang, Q. C. Wu, S. L. Su, X. Ji, and S. Zhang, “Shortcuts to adiabatic passage for multiqubit controlled-phase gate,” Phys. Rev. A 91, 032304 (2015).
[Crossref]

Xia, Y.

Y. H. Cheng, Y. Xia, Q. Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Y. H. Chen, Y. Xia, Q. Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

M. Lu, Y. Xia, L. T. Shen, J. Song, and N. B. An, “Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity,” Phys. Rev. A 89, 012326 (2014).
[Crossref]

Yang, C. P.

C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006).
[Crossref]

C. P. Yang and S. Chun, “Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED,” Phys. Rev. A 67, 042311 (2003).
[Crossref]

Yeon, K. H.

X. Q. Shao, L. Chen, S. Zhang, and K. H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys. 42, 165507 (2009).
[Crossref]

Zhang, S.

Y. Liang, Q. C. Wu, S. L. Su, X. Ji, and S. Zhang, “Shortcuts to adiabatic passage for multiqubit controlled-phase gate,” Phys. Rev. A 91, 032304 (2015).
[Crossref]

X. Q. Shao, L. Chen, S. Zhang, and K. H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys. 42, 165507 (2009).
[Crossref]

Zhang, Y. S.

Y. F. Huang, X. F. Ren, Y. S. Zhang, L. M. Duan, and G. C. Guo, “Experimental Teleportation of a Quantum Controlled-NOT Gate,” Phys. Rev. Lett. 93, 240501 (2004).
[Crossref]

Zheng, S. B.

S. B. Zheng, “Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction,” Phys. Rev. A 87, 042318 (2013).
[Crossref]

S. B. Zheng, “Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation,” Phys. Rev. Lett. 95, 080502 (2005).
[Crossref] [PubMed]

Ziesel, F.

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

Zoller, P.

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74, 4091–4094 (1995).
[Crossref] [PubMed]

Adv. At. Mol. Opt. Phys (1)

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys,  62, 117–169 (2013).
[Crossref]

Eur. Phys. J. D (1)

N. Sangouard, X. Lacour, S. Guérin, and H. R. Jauslin, “CNOT gate by adiabatic passage with an optical cavity,” Eur. Phys. J. D 37, 451–456 (2006).
[Crossref]

Europhys. Lett. (2)

K. H. Hoffmann, P. Salamon, Y. Rezek, and R. Kosloff, “Time-optimal controls for frictionless cooling in harmonic traps,” Europhys. Lett. 96, 60015 (2011).
[Crossref]

J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie, “Shortcut to adiabaticity for an interacting Bose-Einstein condensate,” Europhys. Lett. 93, 23001 (2011).
[Crossref]

J. Appl. Phys. (1)

B. Qiao, H. E. Ruda, and J. Wang, “Multiqubit computing and error-avoiding codes in subspace using quantum dots,” J. Appl. Phys. 91, 2524–2529 (2002).
[Crossref]

J. Chem. Phys. (1)

M. Demirplak and S. A. Rice, “On the consistency, extremal, and global properties of counterdiabatic fields,” J. Chem. Phys. 109, 154111 (2008).
[Crossref]

J. Math. Phys. (1)

H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458 (1969).
[Crossref]

J. Phys. A: Math. and Theor. (1)

M. A. Lohe, “Exact time dependence of solutions to the time-dependent Schrodinger equation,” J. Phys. A: Math. and Theor. 42, 035307 (2009).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

X. Q. Shao, L. Chen, S. Zhang, and K. H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys. 42, 165507 (2009).
[Crossref]

J. Phys. Chem. A (1)

M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107, 9937–9945 (2003).
[Crossref]

J. Phys. Chem. B (1)

M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109, 6838–6844 (2005).
[Crossref]

J. Phys: Conf. Ser. (1)

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser. 196, 012017 (2009).

New J. Phys. (1)

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

Phys. Lett. A (1)

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000).
[Crossref]

Phys. Rev. A (13)

Y. H. Cheng, Y. Xia, Q. Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Y. Liang, Q. C. Wu, S. L. Su, X. Ji, and S. Zhang, “Shortcuts to adiabatic passage for multiqubit controlled-phase gate,” Phys. Rev. A 91, 032304 (2015).
[Crossref]

M. Lu, Y. Xia, L. T. Shen, J. Song, and N. B. An, “Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity,” Phys. Rev. A 89, 012326 (2014).
[Crossref]

Y. H. Chen, Y. Xia, Q. Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

S. B. Zheng, “Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction,” Phys. Rev. A 87, 042318 (2013).
[Crossref]

D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, and M. Desouter-Lecomte, “Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory,” Phys. Rev. A 80, 042325 (2009).
[Crossref]

D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995).
[Crossref] [PubMed]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[Crossref] [PubMed]

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

C. P. Yang and S. Chun, “Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED,” Phys. Rev. A 67, 042311 (2003).
[Crossref]

C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006).
[Crossref]

X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Phys. Rev. Lett. (9)

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

Y. F. Huang, X. F. Ren, Y. S. Zhang, L. M. Duan, and G. C. Guo, “Experimental Teleportation of a Quantum Controlled-NOT Gate,” Phys. Rev. Lett. 93, 240501 (2004).
[Crossref]

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74, 4091–4094 (1995).
[Crossref] [PubMed]

S. B. Zheng, “Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation,” Phys. Rev. Lett. 95, 080502 (2005).
[Crossref] [PubMed]

A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, “Controlling fast transport of cold trapped ions,” Phys. Rev. Lett. 109, 080501 (2012).
[Crossref] [PubMed]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to Adiabatic Passage in Two- and Three-Level Atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref] [PubMed]

A. del Campo, “Shortcuts to adiabaticity by counter-diabatic driving,” Phys. Rev. Lett. 111, 100502 (2013).
[Crossref]

P. Facchi and S. Pascazio, “Quantum Zeno Subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[Crossref] [PubMed]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Science (1)

N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[Crossref] [PubMed]

Other (3)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

D. P. DiVincenzo, S. L. Braunstein, and H. K. Lo, Scalable Quantum Computers (Wiley- VCH, Berlin, 2001).

A. Mostafazadeh, Dynamical Invariants, Adiabatic Approximation, and the Geometric Phase (Nova Science Pub Incorporated2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic setup of CNOT gate implementation. The two atoms are trapped in two spatially separated optical cavities connected by a fiber, and each atom possesses five atomic levels.
Fig. 2
Fig. 2 Schematic representation of the four steps of the construction of the CNOT gate. The initial state is denoted by an empty circle and the final state is represented by a full black circle.
Fig. 3
Fig. 3 (a) Temporal profile of the time dependence Rabi frequencies Ω i (t)/λ versus λt with Ω i (t) = Ω11(t) (dash blue line), Ωa1(t) (solid blue line), Ω21(t) (dash red line), Ω12(t) (solid red line), Ω22(t) (solid green line), Ωa2(t) (dash green line), Ω′ a (t) (solid violet line) and Ω1(t) (dash violet line). (b) Time evolutions of the populations of the corresponding system states with the initial states |g0g1AB. (c) Time evolutions of the populations of the corresponding system states with the initial state |g0g2AB. The system parameters are set to be ε = 0.25, λA = λB = λ and tf = 15/λ.
Fig. 4
Fig. 4 The fidelity of the CNOT gate versus ε and λtf regardless of the decoherence.
Fig. 5
Fig. 5 The effect of atomic spontaneous emission γ on the fidelity of the CNOT gate with different values of the cavity decay κ.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

H K = H obs + K H meas ,
U ( t ) = exp [ i t n ( K λ n P n + P n H obs P n ) ] ,
i h ¯ I ( t ) t = [ H ( t ) , I ( t ) ] .
| Ψ ( t ) = n C n e i θ n | Φ n ( t ) ,
θ n ( t ) = 1 h ¯ 0 t d t Φ n ( t ) | i h ¯ t H ( t ) | Φ n ( t ) .
| Ψ 0 = α 1 | g 1 g 1 AB + α 2 | g 1 g 2 AB + α 3 | g 0 g 1 AB + α 4 | g 0 g 2 AB ,
| Ψ = α 1 | g 1 g 1 AB + α 2 | g 1 g 2 AB + α 3 | g 0 g 2 AB + α 4 | g 0 g 1 AB ,
| Ψ 1 = α 1 | g 1 g 1 AB + α 2 | g 1 g 2 AB α 3 | g 0 a AB + α 4 | g 0 g 2 AB .
| Ψ 2 = α 1 | g 1 g 1 AB + α 2 | g 1 g 2 AB α 3 | g 0 a AB α 4 | g 0 g 1 AB .
| Ψ 3 = α 1 | g 1 g 1 AB + α 2 | g 1 g 2 AB + α 3 | g 0 g 2 AB α 4 | g 0 g 1 AB .
| Ψ 4 = α 1 | g 1 g 1 AB + α 2 | g 1 g 2 AB + α 3 | g 0 g 2 AB + α 4 | g 0 g 1 AB ,
H 1 = H a-l + H a-c-f ,
H a-l = Ω 11 ( t ) | e B g 1 | + Ω a 1 ( t ) | e B a | + H . c . ,
H a-c-f = λ A a A | e A g 0 | + λ B a B | e B g 0 | + η b ( a A + a B ) + H . c . ,
| ϕ 1 = | g 1 g 1 AB | 000 AfB , | ϕ 2 = | g 1 e AB | 000 AfB , | ϕ 3 = | g 1 a AB | 000 AfB , | ϕ 4 = | g 1 g 0 AB | 001 AfB , | ϕ 5 = | g 1 g 0 AB | 010 AfB , | ϕ 6 = | g 1 g 0 AB | 100 AfB .
Γ P 0 = { | ϕ 1 , | ϕ 3 } , Γ P 1 = { | ψ 1 } , Γ P 2 = { | ψ 2 } , Γ P 3 = { | ψ 3 } , Γ P 4 = { | ψ 4 } ,
| ψ 1 = ( C + B ) A B 2 2 λ η 2 | ϕ 2 + λ 2 B 2 η 2 | ϕ 4 A B 2 η | ϕ 5 + | ϕ 6 , | ψ 2 = ( C + B ) A B 2 2 λ η 2 | ϕ 2 + λ 2 B 2 η 2 | ϕ 4 + A B 2 η | ϕ 5 + | ϕ 6 , | ψ 3 = ( C + B ) A + B 2 2 λ η 2 | ϕ 2 + λ 2 + B 2 η 2 | ϕ 4 A + B 2 η | ϕ 5 + | ϕ 6 , | ψ 4 = ( C + B ) A + B 2 2 λ η 2 | ϕ 2 + λ 2 + B 2 η 2 | ϕ 4 + A + B 2 η | ϕ 5 + | ϕ 6 ,
H 1 i , α , β ( E i P i α + P i α H a l P i β ) = E 1 | ψ 1 ψ 1 | + E 2 | ψ 2 ψ 2 | + E 3 | ψ 3 ψ 3 | + E 4 | ψ 4 ψ 4 | ,
| ϕ 1 = | g 0 g 1 AB | 000 AfB , | ϕ 2 = | g 0 e AB | 000 AfB , | ϕ 3 = | g 0 a AB | 000 AfB , | ϕ 4 = | g 0 g 0 AB | 001 AfB , | ϕ 5 = | g 0 g 0 AB | 010 AfB , | ϕ 6 = | g 0 g 0 AB | 100 AfB , | ϕ 7 = | e g 0 AB | 000 AfB .
Γ P 0 = { | ϕ 1 , | ψ 0 , | ϕ 3 } , Γ P 1 = { | ψ 1 } , Γ P 2 = { | ψ 2 } , Γ P 3 = { | ψ 3 } , Γ P 4 = { | ψ 4 } ,
| ψ 0 = η A ( | ϕ 2 λ η | ϕ 5 + | ϕ 7 ) , | ψ 1 = 1 2 ( | ϕ 2 + | ϕ 4 | ϕ 6 + | ϕ 7 ) , | ψ 2 = 1 2 ( | ϕ 2 | ϕ 4 + | ϕ 6 + | ϕ 7 ) , | ψ 3 = λ 2 A ( | ϕ 2 A λ | ϕ 4 + 2 η λ | ϕ 5 A λ | ϕ 6 + | ϕ 7 ) , | ψ 4 = λ 2 A ( | ϕ 2 + A λ | ϕ 4 + 2 η λ | ϕ 5 + A λ | ϕ 6 + | ϕ 7 ) ,
H eff = η A ( Ω 11 ( t ) | ψ 0 ϕ 1 | + Ω a 1 ( t ) | ψ 0 ϕ 3 | + H . c . ) .
I ( t ) = χ ( cos ν sin β | ψ 0 ϕ 1 | + cos ν cos β | ψ 0 ϕ 3 | + i sin ν | ϕ 3 ϕ 1 | + H . c . ) ,
ν ˙ = η A [ Ω 11 ( t ) cos β Ω a 1 ( t ) sin β ] , β ˙ = η A tan ν [ Ω a 1 ( t ) cos β + Ω 11 ( t ) sin β ] .
Ω 11 ( t ) = A η ( β ˙ cot ν sin β + ν ˙ cos β ) , Ω a 1 ( t ) = A η ( β ˙ cot ν cos β ν ˙ sin β ) .
| Φ 0 ( t ) = cos ν cos β | ϕ 1 i sin ν | ψ 0 cos ν sin β | ϕ 3 , | Φ ± ( t ) = 1 2 [ ( sin ν cos β ± i sin β ) | ϕ 1 + i cos ν | ψ 0 ( sin ν sin β i cos β ) | ϕ 3 ] .
ν ( t ) = ε , β ( t ) = π t 2 t f ,
Ω 11 ( t ) = A π η 2 t f cot ε sin π t 2 t f , Ω a 1 ( t ) = A π η 2 t f cot ε cos π t 2 t f .
| Ψ ( t f ) = sin ε sin θ | ϕ 1 + ( i sin ε cos ε + i sin ε cos ε cos θ ) | ψ 0 + ( cos 2 ε sin 2 ε cos θ ) | ϕ 3 ,
H 2 = Ω 21 ( t ) | e B g 2 | + Ω 12 ( t ) | e B | g 1 + λ A a A | e A g 0 | + λ B a B | e B g 0 | + η b ( a A + a B ) + H . c . .
Ω 21 ( t ) = A π η 2 t f cot ε sin π t 2 t f , Ω 12 ( t ) = A π η 2 t f cot ε cos π t 2 t f .
H 3 = Ω a 2 ( t ) | e B a | + Ω 22 ( t ) | e B g 2 | + λ A a A | e A g 0 | + λ B a B | e B g 0 | + η b ( a A + a B ) + H . c . .
Ω a 2 ( t ) = A π η 2 t f cot ε sin π t 2 t f , Ω 22 ( t ) = A π η 2 t f cot ε cos π t 2 t f .
H 4 = Ω 1 ( t ) | e B g 1 | + Ω a ( t ) | e B a | + λ A a A | e A g 0 | + λ B a B | e B g 0 | + η b ( a A + a B ) + H . c . .
Ω 1 ( t ) = A π η 2 t f cot ε sin π t 2 t f , Ω a ( t ) = A π η 2 t f cot ε sin π t 2 t f .
ρ ˙ = i [ H total , ρ ] κ f 2 [ b b ρ 2 b ρ b + ρ b b ] j = A , B κ j 2 [ a j a j ρ 2 a j ρ a j + ρ a j a j ] j = A , B k = g 0 , g 1 , g 2 , a γ j 2 [ σ e j , e j ρ 2 σ k j , e j ρ σ e j , k j + ρ σ e j , e j ] ,

Metrics